
A book about the basic knowledge you need to have for developing programs for the
MSP430. It is written in a bright, clear, and down-to-earth language for hobbyists,
inventors, technicians, engineers, and product managers. It begins with presenting
the MSP430’s basic set of systems, their purposes, and how it starts, runs, goes to
sleep, interrupted from sleep, performs work, and then goes back to sleep. Focus is on
code and program development: accessing registers, the basic approach for develop-
ing a program, a programming reference model for getting oriented, the two basic
patterns of program development, the most common programming routines and
practices, the various types of input interruption signals which tell this microcon-
troller which interrupt service routine to use for carrying out work and producing
output signals, and how to write the code for those routines. It is fully illustrated,
indexed, and presents numerous programming examples. Included are many helpful
tips. Ideal for self-paced, individualized learning. All examples are written in the C
Programming Language.

B. Sc. in Physics
By Tomislav N. Krnich

Getting Started

MSP430 Microcontroller
Engineering Guide

Internetpress® Volume

MSP430 Microcontroller
Engineering Guide

Getting Started
By Tomislav N. Krnich

B.Sc. in Physics

Written, illustrated, edited, printed, bound, and published by the author.

Internetpress®

Volume

ii

TOMISLAV N. KRNICH (1961-) was born in Canada and then immigrated to the
United States of America where he earned a Bachelors of Science degree in Physics
with a minor in U.S. National Security Policy from Georgia State University. He has
worked in the civil and defense aviation industries as an engineer, and in the
telecom-munications, internet, information systems, and automotive industries as a
solution architect, systems analyst, and technical writer. Embedded computing
systems are one of his special interests.

Internetpress, Los Gatos, California 95032
http://internetpress.com
© 2022 by Tomislav N. Krnich
All rights reserved. Published August 2022

The author is grateful for your purchase. Please obey international copyright laws
since the sale of this book provides an income for the author. Producing copies of this
book for distribution is not permitted. Only the author has that right. You may contact
the author through e-mail at .

ISBN (vol 1): 978-0-9985736-0-1 (paperback)

• 81 Program Examples Written in the C Programming Language
• 90 Diagrams
• 29 Chapters
• Includes a Comprehensive Index

This book was produced in the United States of America.

While every precaution has been taken in the preparation of this book, the author
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained in this book.

Internetpress® is a registered trademark that is owned by the author.

This book is printed on acid free paper.

Do not treat others in ways that you would not like to be treated - the golden rule.

Contents

1 Introduction . 1
Data Processing as the Highest View of Handling Digital Data . 1
Microcontrollers are Built of System Modules and Peripheral Modules 2
The Historical Emergence of the Microcontroller . 2
Appearance of the MSP430 Microcontroller . 3
Why use the MSP430? . 3
Purpose of this Book . 3
Firmware is the Program of Instructions We Develop for a Microcontroller 4
Bits, Bytes, and the Native Word are the Basic Units of Data . 4
How the Microcontroller Views Data . 5
The MSP430 is Offered with Two Types of Processors: CPU and the CPUX 6
How We [as Developers] may View and Express Data . 6
Registers are Used for Configuring and Controlling the Microcontroller 6

Main Memory Registers . 7
What is a Main Memory Register used for? . 8
CPU Registers . 8

Summary . 9

2 Visualizing How the MSP430 Operates . 11
Basic View . 12
Power-up View . 12
Event-Driven Views . 13

View of an Internally Occurring Event . 13
Steps 1 and 2 . 14
CPU Interrupt System Behavior . 14
Step 3 . 15
Steps 4, 5, 6, and 7 . 15
C, Assembly, and the Final ISR Instruction . 15
Step 8 . 15

View of an Externally Occurring Event . 16
Steps 1 and 2 . 16
Steps 3, 4, and 5 . 17
Steps 6 and 7 . 17
Steps 8, 9, 10, and 11 . 17
Step 12 . 17

Functional Block Diagram View . 17
Memory Modules . 18
Memory Buses . 19
Power Management Module . 19
CPU, EEM, JTAG, and SBW Modules . 20
Clock System Module . 21
ADC Module . 21
MPY32 Module . 22
I/O Ports . 22
Digital I/O Module . 24
SYS Module . 24
CRC16 Module . 24
Timer Modules . 25

iv

...continuation of the Functional Block Diagram View
Serving as a Frequency Dependent Timer . 26
Serving as a Frequency Independent Counter . 26
Serving as a Module for Measuring Rates . 26
Serving as a Module for Producing PWM Voltage Signals 27
How the Functional Diagram Describes the Timer Module 28

eUSCI Module . 28
LPM3.5 Domain . 29
RTC Counter Module . 30
BAKMEM Module . 30

Pin Designation View . 31
Module Functional View . 32

3 Visualizing the Main Memory . 35
Main Memory Structure . 35
CPU Memory Structure . 36
Introduction to Register Tables . 37

4 The Reset System and its Subsystems . 39
Power-Up . 39
Reset . 39
The BOR, POR, and PUC Sequence . 40
Register Table Bitfields . 40
Reset Signals . 40

BOR Signals . 40
False BOR Signals . 41

POR Signals . 41
PUC Signals . 41

5 How to Read and Use the Register Tables . 43
The Conventional Register Table . 43

Register Variable and Register Name . 43
Register Variable . 44
Opening the Header File where the Register Variables are Declared 45
Register Bitfields . 45
Bitfield Mask . 46
Bitfield Mask Suffix . 46
The Standard Bits . 47
Register Bit Accessibility and Initial Condition . 47
Bitfield Descriptions . 48
Interrupt System Bitfields . 49

Using a Register Table and Functional View to Help Develop Code 49
Distinguishing between a Digital I/O Module and Port . 50

Digital I/O Module . 50
Port . 51

Port Register Tables . 52
Port Channels, Port Register Bitfields, and Port Register Bitfield Masks 52
First Type of Port Register Table . 52
Second Type of Port Register Table . 54
Third Type of Port Register Table . 56

T. N. Krnich v

6 Code Composer Studio Usage Tips . 59
Forcing the CCS Debugger to Step through Each Instruction . 59
Configuring the Variables View for a Different Numbering Format 60

7 How to Write into a Register . 61
Our Model Register . 61
Masking Concepts . 62
Overview of the Setting, Clearing, and Toggling Operations . 64
Setting Bits in a Register . 65

Setting a Single Bit . 65
Combining Masks to Create a Single Mask . 66
Setting Multiple Bits . 66

Clearing Bits in a Register . 67
Clearing a Single Bit . 67
Clearing Multiple Bits . 68

Simultaneously Setting and Clearing Bits in a Register . 69
Toggling Bits in a Register . 70

Toggling a Single Bit . 70
Toggling Multiple Bits . 71

Just Simply Writing a Number into a Register . 71
Writing into Password Protected Registers . 72

8 How to Declare a Storage Variable . 75
A Description for the Storage Variable . 75
Declaring Storage Variables . 76

9 How to Read a Register . 77
The Process . 77
The Code . 77

10 Background for Testing the Contents of a Register . 79
Integer Constants . 79
The MSP430 Relaxed Compiler . 79
Using Binary Notation . 80

Enabling CCS Support for GCC Extensions . 80

11 How to Test the Contents of a Register . 81
The Process . 81
The Code . 81

12 How to use a Pointer to Read and Write into Main Memory . 83
Pointer and Pointer Variable . 83
Indirection Operator . 83
Converting an Address Number into a Pointer: the Pointer Expression 84

Declaring a Pointer Variable . 85
Declaring a Pointer and Assigning it to a Pointer Variable 85

Reading Data . 86
Using a Pointer . 86
Using a Pointer Variable . 87

Writing Data . 87
Using a Pointer Macro . 88

vi

13 Watchdog Timer and Putting it on Hold . 89
Purpose . 89
Basic Operation . 89
Interval Reset Instruction . 90
Watchdog Control Register Table . 90
Stopping the Watchdog Timer . 94
Writing an Active Watchdog Timer Handler . 95
Stopping the Watchdog Timer during the Boot Process . 95

Using Boot Hook Functions to Stop the Watchdog and Execute other Instructions . . 95
Using the _system_pre_init() function . 96
Using the _system_post_cinit() function . 96

Reading the Watchdog Timer Register . 96

14 main() Function. 99
Purpose . 99
How the main() Function is Called . 99
Syntax and Format for a C Language Function . 99
The Two Standard Syntaxes for the main() Function . 100

First Syntax and Format . 100
main() is Void of Parameters . 100
The return Statement . 100

Second Syntax and Format . 101

15 Program Development Nomenclature. 103
Routines . 103
Subroutines . 103
Block of Instructions . 103
Logic Circuits as Routines and Subroutines . 103
Service . 103

16 Structures for Program Development . 105
Sequence Structure . 105
Selection Structures . 106
Repetition Structures . 106

17 Basic Approach for Developing a Microcontroller Solution. 107
Task 1: Conceptualize the Problem and its Solution . 107
Task 2: Design the Power Supply Interface Circuit . 107
Task 3: Design the Signal Input Interface Circuit . 107
Task 4: Develop Instructions which Configure the Signal Input Path 107
Task 5: Develop Instructions which Configure the Input Module 108
Task 6: Develop Instructions which Make Decisions . 108
Task 7: Develop Instructions which Act on the Result of a Decision 108
Task 8: Develop Instructions which Configure the Output Module 108
Task 9: Develop Instructions which Configure the Signal Output Path 108
Task 10: Design the Signal Output Interface Circuit . 108

T. N. Krnich vii

18 MSP430 Reference Model . 109
Structural Overview . 109
Input Signal Stack . 110

Externally Occurring Events . 111
Internally Occurring Events . 112

Output Signal Stack . 112
Power Supply Stack . 113

19 Patterns for Program Development . 115
Repetitive-Driven Pattern of Program Development . 115

Configure and Setup Sequence . 116
Watchdog Timer Handler . 116
Oscillator Settling Handler . 116
Signal I/O Multiplexing . 117
Configure the System and Peripheral Modules . 117
Unlock Digital I/O Port Channels . 117
Reset Fault Handler . 117

The Repetitive Sequential Routine . 118
The Repetitive Selection Routine . 119

Event-Driven Pattern of Program Development . 120
System Configuration and Setup Sequence . 121

Watchdog Timer Handler . 121
About the Next six Routines . 122
Oscillator Settling Handler . 122
Signal I/O Multiplexing . 122
Configure the System and Peripheral Modules . 122
Unlock the Digital I/O Port Channels . 123
Port Channel Interrupt Flag Handler . 123
System Reset Fault Handler . 123
Enable Maskable Interruptions . 124
Volatile Data Handler . 124
Enter a Low Power Operating Mode . 125

Input Signal Sequence . 125
Decision and Output Signal Sequence . 125

20 Placing the Event-Driven Pattern into a Larger Context . 127
Physical Interfacing and Power-Up . 129
Supply Voltage Supervision . 130
Operating Mode Diagram . 131
Reset Routines . 134

Brownout Reset (BOR) . 135
Power-On Reset (POR) . 136
Power-Up Clear (PUC) . 137

MSP-BSL and boot.c . 138
MSP-BSL . 139
Boot Program . 139

Boot Program Execution . 140
Initializing the Program Execution Stack . 141
Initializing the Memory Protection Unit . 141
Execute a Pre-Initialization Function . 141
Initialize Global Variables . 142
Execute a Post Initialization Function . 142
Call the main() Function . 142

viii

main() Function . 142
CPU Interruption . 142
Preprocessing Translation Units . 143

Conventional C Translation Units . 144
#include Preprocessor Directives . 144
#define Preprocessor Directives . 145
Define Global Variables . 145
Define Conventional Functions . 146

MSP430 Translation Units . 146
#include <msp430.h> . 146
#include Specialized MSP430 Library Headers . 146
Define a Pre-initialization Boot Hook Function . 147
Define a Post initialization Boot Hook Function . 147
Define an Interrupt Service Routine (ISR) . 147
Define #pragma Directives . 147

21 Repetitive-Driven Programming Examples . 149
Development Tools . 149
Repetitive Sequential Pattern . 149

Pseudo Code Template . 149
Using a Repetitive Sequence to Produce an Output Signal . 150

Model Use Case . 150
Interfacing Circuit . 150
Output Signal Pathway . 151
The Program . 153

Block of System Setup Instructions . 153
Block of Repetitive Sequential Instructions . 154

Repetitive Selection Pattern . 155
Pseudo Code Template . 155
Using an External Input Signal for Selecting an Output Signal 155

Model Use Case . 155
Interfacing Circuits . 156

Switch Circuit and Its Operation . 157
First State Operation: Switch is Open . 158
Second State Operation: Switch is Closed . 159
LED Circuit . 159

The Program . 159
Block of System Setup Instructions . 160
Block of Repetitive Selection Instructions . 161

Using an Internal Input Signal for Selecting an Output Signal 161
Model Use Case . 161
Interfacing Circuits . 162

Input Interfacing Circuit . 162
Output Interfacing Circuits . 162

Signal Pathways . 162
Input Path from the Temperature Sensor . 164

PMM Section . 164
ADC Section: Input Signal Multiplexing . 165

ADC Control Signals . 166
Voltage Measurement Scale . 166
Clock Conversion Signal . 166
SAMPCON and SHI Signals . 166
ADCENC and ADCON Signals . 167

Output Paths to LED1 and LED2 . 167

T. N. Krnich ix

...continuation of Using an Internal Input Signal for Selecting an Output Signal
The Program . 168

Block of System Setup Instructions . 168
Write a Watchdog Timer Handler . 168
Setup the Sensor to Create Input Signals . 168
Setup the ADC as the Input Signal Peripheral Module 169
Setup the Digital I/O as the Output Signal Peripheral Module 170
Declare Variables and Constants . 170

Block of Repetitive Selection Instructions . 172

22 Event-Driven Programming Routines and Practices . 175
Boot Initialization . 175

Pre-Initialization . 175
Post Initialization . 175

Manipulating Bits in Password Protected Registers . 176
Password that Protects a Single Register . 176
Password that Protects a Set of Registers . 177

Watchdog Timer Handlers . 178
Placing the Watchdog on Hold . 178
Using Watchdog Mode . 178

The Counter Interval . 179
The Pattern . 179
The Code Examples . 180

Oscillator Settling Handler . 182
Signal Path from an External Oscillator to the Fault Detector 183
Code Example for the Oscillator Fault Handler . 184

Configuring a Port Channel . 187
Configuring as a GPIO Input for Sensing a Signal Changing from Low to High . . . 190
Configuring as a GPIO Input for Sensing a Signal Changing from High to Low . . . 191
Configuring a Channel as a Non-GPIO Function . 192
Configuring a Port Channel as Unused . 197

Accessing Protected Registers . 197
Watchdog Registers . 197
Power Management Module Registers . 197
Clock System Registers . 198
Memory Protection Unit (MPU) Registers . 198

Configuring Unused Port Channels . 198
Code Example for Putting a Port Channel into a High Impedance State 199

Unlocking Modules & Digital Port Channels which are in the LPMx.5 Domain 201
Port Channel Interrupt Flag Handler . 202
Clearing a Port Channel Flag from Inside of an ISR . 202
Determining the Source of an Interrupt Flag . 203

Interrupt Vector . 203
Flow of Execution from a Set Flag to an ISR or an RFH . 203

Basic Flow for the Non-Maskable and Maskable Interruptions 204
Basic Flow for the Reset Interruption . 204

Flag to Routine Relationships . 205
Flag to Reset Fault Handler (RFH) Relationship . 205
Flag to ISR Relationships . 206

Flag Determining Code Examples . 207
Using the if() Statement . 207
Using the switch() Statement . 208

The __even_in_range() Function . 208

x

...continuation of Using the switch() Statement
Code Example for using the switch() to Determine which Flag is Set 209

The PxIV Register Table . 209
The switch() Code . 210

Conventional Register Scenario . 211
Enabling and Disabling Maskable Interruptions . 212
Unlocking and Locking FRAM . 213

Review of Volatile and Non-Volatile Memory . 213
FRAM Access Control . 213
Example for Unlocking and Locking FRAM . 214

Register which Controls the FRAM . 214
Code Example . 216

Volatile Data Handler . 217
Using the PERSISTENT() #pragma to Protect Volatile Data 218

Code Example for Protecting a Single Variable . 218
Code Example for Protecting the Variables in an Array 219

Using the Backup Memory Registers . 220
Determining How Much Memory is Consumed . 221
Entering a Low Powered Operating Mode . 222

Conventional Lower Powered Operating Modes . 222
Fractional Lower Powered Modes (LPMx.5) . 223

Delay Function . 225

23 Interrupt Handling and Interrupt Vectors . 227
CPU Interruptions are Event-Driven . 227
Event Monitoring Blocks . 227
Conventional Flag Registers and Interrupt Vector Registers . 227
The Interrupt Service Routine and Vector . 228
Interrupt Vectors . 228
Block of Interrupt Control Logic . 229
Reset, Non-Maskable (NMI), and Maskable Types of Interruptions 229
How the Interruption is Processed . 230

Transfer of Program Execution to the ISR . 231
Execution while inside of the ISR . 231
Transfer of Program Execution from the ISR back to the Low Powered State 232

Interrupt Prioritization . 232
Interrupt Compare Controller (ICC) . 233

24 How to Determine which are the Multi-Flagged Vectors . 235
Determining which Vectors are Bound to More than one Flag . 235
Finding the Name of the Register where the Flag is Located . 235

25 The Reset Interruption . 237
Flow for the System Reset Interruption . 238
The Reset Fault Handler (RFH) . 239

Reset Fault Handler Based on if() Statements . 241
Reset Fault Handler Based on a switch() Statement . 242

Reset Caused by a Watchdog Timer Overflow . 244

T. N. Krnich xi

26 How to Write an Interrupt Service Routine (ISR). 245
The Conventional ISR . 245
Built-in Default Interrupt Service Routine (ISR) . 247
Customized Default Interrupt Service Routine (ISR) . 248

27 Non-Maskable Interruption (NMI) . 249
Flow for the Non-Maskable Interruption (NMI) . 250
Non-Maskable ISR Examples . 252

main() Function for ISR Code Examples 76 and 77 . 253
Putting the RST/NMI Pin into NMI Mode . 254
Configuring P1.0 to Drive the LED . 256
Final Instructions for main() . 256

ISR which uses the if() Selection Statement to Determine the NMI Flag 257
The ISR's Behavior . 257
Writing the ISR . 257

Getting the Vector's Name . 257
Binding the Vector to the ISR . 258
The ISR's Signature . 258
The First if() Selection Statement . 258
The Second if() Selection Statement . 259
Returning the Flow of Execution Back to where it was Interrupted 259

ISR which uses the switch() Selection Statement to Determine the NMI Flag 260
The ISR's Behavior . 260
Writing the ISR . 260

Getting the Vector's Name . 260
Binding the Vector to the ISR . 260
The ISR's Signature . 261
Getting the IVR Register Variable and it Codes . 261
The switch() Statement . 263
Returning the Flow of Execution Back to where it was Interrupted 264

28 Maskable Interruption . 265
Flow for the Maskable Interruption . 266
About this Chapter’s Examples . 268
ISR using the if() Selection Statement to Determine which Maskable Flag is Set 269

The main() function . 270
Configuring P2.3 and P2.7 to Sense Input Signals . 270
Configuring P1.0 and P1.1 to Produce Output Signals . 271
Final Instructions for main() . 271
The ISR's Behavior . 272

Writing the ISR . 272
Port Channel Flag Names . 272
Getting the Interrupt Vector Name . 272
Binding the Vector to the ISR . 273
The ISR's Signature . 273
How Many if() selection Statements to Use . 273
The First if() Selection Statement . 273
The Second if() Selection Statement . 273
Returning the Flow of Execution Back to where it was Interrupted 274

xii

ISR using the switch() Selection Statement to Determine which Maskable Flag is Set . 274
The main() Function . 274
The ISR's Behavior . 275
Writing the ISR . 275

Getting the Port Channel Flag Names . 275
Getting the Interrupt Vector Name . 276
Binding the Vector to the ISR . 277
The ISR's Signature . 277
How Many case selection Statements to Use . 277
The First Case . 277
The Second Case . 278
Returning the Flow of Execution Back to where it was Interrupted 278

29 Interruption from Fractional Low Powered Mode (LPMx.5) 279
Flow for the LPMx.5 Interruption . 282
Flow for the LPMx.5 Interrupt Service Routine (ISR) . 284
Program Example . 285

Circuit Schematic for the Program . 286
How the Program Example Works . 286
Structure of the Program Example . 287
Program Example . 288

Index . 293

Chapter 1

Introduction

The MSP430 microcontroller is typically used for monitoring and controlling
devices, but it is not limited to just that type of work. It is a general purpose data pro-
cessing machine, and such a machine is called a digital computer. It reads data from a
device, it then processes the data to make decisions, and the results of those decisions
produces data which then is used for controlling, driving, or communicating with a
device. Furthermore, a single MSP430 is not limited to interacting with a single
device. It can simultaneously handle many devices.

Data which flows into and out of the MSP430 are in the form of voltage signals
which flow at low rates of amperes. The voltages range from to volts of
direct current (VDC). The amperes range from to about milliampere.

There are a very wide variety of devices which the MSP430 can monitor and control,
and all those devices can produce and receive a wide variety of analog and digital
voltage signals. Therefore, we can perceive the MSP430 as being a type of computer
called a mixed signal processor. But not just a mixed signal processor, it is a stored
program mixed signal processor. That means it will handle and produce many differ-
ent types of analog and digital signals while under the control of a computer program.

Signals which enter the MSP430 are converted to binary numbers so the signals can
be understood by it and processed, in other words, so decisions can be made. The
results of the decisions are also in the form of and stored as binary numbers. The
result of a decision is typically used for producing an output signal. Binary numbers,
which form a decision, are then converted to the appropriate type of analog or digital
output signal.

The binary numbers which are processed (meaning, analyzed, manipulated, and
moved around inside of the microcontroller) are referred to as binary data or digital
data. Electronic circuits which handle digital data are called digital logic circuits. The
work carried out by such circuits is called data processing.

Data Processing as the Highest View of Handling Digital Data

Data processing involves computation and movement of digital data. The set of cir-
cuits which handle computation is called the arithmetic logic unit (ALU). The set of
circuits which handle the movement of data, so the ALU can access it, is called con-
trol logic. The combination of these computation and movement circuits is called a
data processing unit, and when built into a digital computer, they are called a central
processing unit (CPU).

A CPU needs instructions in order to know where to get data, to know which compu-
tations to perform on the data, and where to put the resulting data. Those instructions

2 Introduction

are in the form of a program which is loaded in the computer’s memory. The CPU
uses its control logic for locating the beginning of the program, and then sequentially
reads and executes each instruction in the program. These steps are called the fetch
and execute cycle. A CPU which is under the control of a program is called a micro-
processor.

Besides fetching and executing instructions, the CPU control logic also handles the
work needed for transferring data back into memory and for controlling blocks of
digital logic circuits which support the microprocessor in specific ways. Those
blocks are called modules. There are two types of modules: system modules and
peripheral modules.

Microcontrollers are Built of System Modules and Peripheral Modules

A system module supports the overall operation of the CPU. For example, two essen-
tial types of system modules are called the clock module and the memory module.
The clock provides a timing signal which the CPU uses for cycling though its fetch
and execution cycles, and the memory module stores the program.

A peripheral module acts as a data interface in between the microprocessor and a
device which the microcontroller is monitoring or controlling. In other words, it han-
dles voltage signals coming from or going out to some type of device. The signals are
called microprocessor input and output signals.

For data flowing into the microcontroller, the peripheral module converts input sig-
nals into digital data and then makes it available to the microprocessor by placing it
in a specific location in memory. For data flowing out of the microcontroller, the
module gets digital data from some specific location in memory, and then converts it
to some type of voltage output signal. The output signal is in the form or type which
can be accepted and used by the device. The device is referred to as a peripheral
device, and such a device maybe in the form of a switch, relay, sensor, actuator, dis-
play, application specific integrated circuit (ASIC), or another microcontroller.

The Historical Emergence of the Microcontroller

During the middle 1960’s, the ALU, control logic, and the peripheral modules were
fabricated into separate silicon chips of integrated circuits to form a chip set. The
individual chips had to be connected together with wires to form what was called
back then a microcomputer. Although there were various technologies used for creat-
ing memory modules, memory was typically fabricated of toroidal magnets to form
non-volatile program storage that was called magnetic core memory. Non-volatile
means the program will not be lost after the computer is turned off. The Apollo space
flight guidance computer was built of core memory.

Around 1970, the set of chips which formed the ALU and control logic were inte-
grated into a single silicon chip that was called a one-chip microcomputer. This book
will often refer to the ALU and control logic as the central processing unit (CPU) or

T. N. Krnich 3

microprocessor. Memory modules and peripheral modules, however, were still exter-
nally connected components. And it was around this time when memory began to be
available as practical integrated circuits built on silicon. Peripheral modules made of
integrated circuits also grew in sophistication.

During the middle 1970’s, the memory module and the general purpose input and
output peripheral module began to be integrated into the one-chip microcomputer.
And during the 1980’s, this type of one-chip microcomputer began to be called a
microcontroller.

Appearance of the MSP430 Microcontroller

During 1992, Texas Instruments began to offer the MSP430, where MSP is an acro-
nym for mixed signal processor. Mixed signal means that various types of input sig-
nals could be fed into it, and various types of output signals could be produced by it.
That ability was created by integrating the microprocessor with a variety of special-
ized peripheral modules into a single integrated circuit. Since that time, Texas Instru-
ments has continually improved the MSP430 microprocessor and also to continually
develop different types of peripheral modules. Today, there are over four hundred dif-
ferent models of the MSP430, and the models branch out into families. Each model is
distinguished by their unique set of system and peripheral modules.

Why use the MSP430?

Whatever can be done by a microcontroller can also be done with circuits built of
ordinary discrete devices such as resistors, transistors, capacitors, diodes, and wires.
And like any other circuits, that approach takes time to design, build, and test. Such
circuits also need a lot of room.

In contrast, the MSP430 contains a set of general purpose and application specific
circuits, which are in the form of built in peripheral modules. The modules can be
directed to behave in the ways we need through the control of a program. The ability
to quickly make changes to the program also dramatically reduces product develop-
ment time. So when using the MSP430, we can save a lot of time, effort, space, and
cost. And have some fun during the process.

Purpose of this Book

The MSP430 is quite literally a remarkable product. It is a computing platform that
provides a whole lot of complex data processing capabilities which are abstracted out
to a single and far less complex abstract layer in the form of a computer program. We
use the program to quickly tailor the processing capabilities to fit our needs.

The modules, especially the peripheral modules, and the ability to program them are
the two primary reasons why we choose to use the MSP430 for building products
which can monitor and control devices. Therefore, in order to incorporate the
MSP430 into a product, knowing about how its modules operate and how to program

4 Introduction

them to do work are the most important types of knowledge and skills we must
develop.

This book has three purposes. The first one is to explain how to write programming
instructions which can read and write into the MSP430’s registers. The second pur-
pose is to explain the fundamental structure of a program. And the third purpose is to
explain how to write programming instructions which prepare the MSP430 for work.

Later volumes will go into far greater detail about individual modules and how to
program them.

Firmware is the Program of Instructions We Develop for a Microcontroller

The computer program that we develop and load into the microcontroller is also
called a firmware program.

Firmware should not be confused with software because of the way they are put into
service and used is not the same. And since computer architecture is based upon dif-
ferent levels of abstraction, making a distinction between the two allows us to better
explain and design computing systems.

The characteristics which distinguish the two are their installation and runtime
behavior. A firmware program is permanently set into the nonvolatile storage fields
of memory, and when needed, it is executed directly from those fields. A software
program is semi-permanently stored in some type of nonvolatile memory, but when
needed, it is loaded into volatile memory and executed from there. When the software
program is exited or closed, it is removed from volatile memory.

Arguments can easily be made which dispute these characteristics. But the point here
is to have concrete definitions so there will be no confusion about what type of pro-
gram is begin discussed and so that proper abstractions can be utilized for making
explanations and descriptions. For example, such distinctions become important in
scenarios where an MSP430 is communicating and interacting with software which is
running on conventional personal computers, or local servers, or remote servers. Be
aware that Texas Instruments documentation will typically refer to firmware as user
software. This book will often refer to the firmware program as just simply the pro-
gram.

Bits, Bytes, and the Native Word are the Basic Units of Data

The binary, decimal, and hexadecimal are positional numbering systems which are
used for developing programs. They use a base set of symbols, called numerals or
digits, which are combined into a sequence of positions to express a single number of
numerical value. Binary numbers are expressed with only two different digits, while
decimals use ten different digits, and hexadecimal numbers use sixteen. All use an
infinite number of positions, or place values, to express a single number.

T. N. Krnich 5

A binary bit is a single position or place value that represents a single digit. A binary
digit can be expressed as either a 0 or 1. The field of computing organizes bits into
sets called nibbles, bytes, and words which have a standard quantity of bits.

A nibble is made of four bits, and a byte is made of eight bits. As for the size of a
word, the size depends on the microcontroller’s central processing unit (CPU), since
it works on words of a fixed length, and that length varies from one type of CPU to
another. It’s called the native word size. Historically, CPU design has progressed
through being able to handle four, eight, sixteen, thirty two, and now sixty four bit
words.

As will be elaborated upon later, there are two types of words which an MSP430
CPU processes. One type is meant to express the number to an address in memory,
and the other type is meant to express the data at the address. When developing a pro-
gram, we will not be interested in the length of an address number. But we will be
interested in the length of data at an address. A single address in MSP430 memory
can only store a byte, but the CPU can simultaneously process two bytes at a time.
This means that the native word for the MSP430 is sixteen bits wide, or in other
words, it is a sixteen bit CPU.

How the Microcontroller Views Data

This really depends on where the data appears. When the data is located on the out-
side of the microcontroller, and it is flowing into or out of a peripheral module, the
data will appear as analog or digital voltage signals. The type of signal which actually
appears will depend on the peripheral device which is being monitored or controlled.
The voltage will typically range from to VDC. And we must take into
account that the actual voltage signal produced by the peripheral device may have to
be properly conditioned with circuits which act as the interface between the micro-
controller and the peripheral device.

The MSP430 does not accept nor produce alternating current (AC) voltage signals.
And AC signals must not be confused with analog signals, since AC is typically not
used for transporting information. However, for an MSP430 to accept an AC signal,
we have to design an interfacing circuit which will convert it to one that fluctuates
between zero and 3.6 VDC. And for an MSP430 to produce an AC signal, we have to
design a circuit that will convert a direct current voltage signal that fluctuates from

 to volts to the appropriate AC voltage signal. But keep in mind that the
MSP430 is not intended to be used in that way.

Since the peripheral module acts as a signal interface in between the microprocessor
and the peripheral device, it is the point where data under goes conversion. All data
which flows from the outside and into the peripheral module is converted by the
module to digital data, and vice versa.

Within the microcontroller, the MSP430 microprocessor perceives and handles all
data as either bytes or words. However, when developing firmware, our code may

6 Introduction

handle data which is a bit, byte, or word in width. And using firmware to manipulate
just a single bit in memory is not uncommon.

The MSP430 is Offered with Two Types of Processors: CPU and the CPUX

The MSP430 is offered with two types of CPUs and two sizes of memory. The first
type of CPU is just simply called the CPU, and it uses the smaller memory module.
The second type of CPU is called the CPUX, and it uses the larger memory module.

The smaller module has addresses of storage, while the larger module has
 addresses of storage. Both modules provide the same amount of storage at

each address in memory; meaning, each address can store only eight bits. The single
characteristic which distinguishes the two CPUs is their ability to handle address
numbers. The CPUX can handle a larger set of addresses. Other than that, there is no
difference between the two CPUs. Also, just because a particular type of CPU may be
able to access or addresses of storage, that characteristic does not
mean the memory module has that amount of space. The memory module comes in
different sizes, depending on the model of MSP430.

How We [as Developers] may View and Express Data

We will be writing code in the C programming language. So from that point of view,
meaning, as we view our firmware code while developing it, the data can appear in
any valid notation. It can be written as decimal numbers, binary numbers, hexadeci-
mal numbers, or as alphanumerical characters; whichever notation is most conve-
nient and appropriate from our point of view. When loading the program into the
microcontroller, the MSP430 C Language Compiler will convert the entire program
to machine code, which is expressed in binary form.

Decimal numbers can be used in our firmware code without any special notation. A
binary number must be denoted with the prefix for example, A hexa-
decimal number must be denoted with the prefix for example, and How-
ever, data sheets and users guides will often denote a hexadecimal number with the
suffix for example and

When stepping through our code, while our code development tool is in debugging
mode, we can configure the tool to present the firmware data, such as numerical vari-
ables and constants, to us in binary, decimal, or hexadecimal notation. The instruc-
tions to do that are described by a later chapter.

Registers are Used for Configuring and Controlling the Microcontroller

The word register has multiple documented origins, which go back to about 1259 of
the current epoch, and which are partly borrowed from French (registre) and partly
borrowed from Latin (registrum). The undocumented usage most certainly goes back
further in time. Its concise meaning varies with context, but it basically means that it

T. N. Krnich 7

is documentation used for recording facts. In the context of an MSP430, here is what
it means.

A microcontroller register is a sort of fact storing electronic circuit. It can be defined
as having physical characteristics and logical uses. It is physically a set of storage
fields where each field can store only a single bit. The storage field is called a bit-
field. The bit in a bitfield can be read and manipulated by our firmware.

As for its uses, a register has two logical uses. The first use is for putting data into a
module, and the second use is for getting data from a module. In other words, from
the microprocessor’s point of view and our firmware’s view, they are data inputs and
outputs for modules.

Every module has its own dedicated set of registers. To configure, control, and moni-
tor a module, our firmware must read and write data into their registers. Data which is
read from the register is used for making a decision. Data which is written into a reg-
ister is used for configuring or driving a module. This is the most fundamental con-
cept in programming the MSP430.

The MSP430 has two locations for registers. One is inside of the CPU, and the other
is inside of the main memory module.

Main Memory Registers

As will be elaborated upon later, locations in main memory are denoted by address
numbers. For the MSP430, the set of address numbers will range from to either

 or depending on the CPU type. That set of addresses is called an
, and keep in mind that each address can store a single byte of data, and

no more.

And up to now, main memory has been referred to as a single memory module, but in
reality, it is two modules. One module is made of non-volatile storage technology
called read only memory (ROM), and the other is made of volatile storage technol-
ogy called random access memory (RAM). The latest models of MSP430 are built of
ferro-electric RAM (FRAM). When power is removed from the microcontroller, data
in the volatile sections of memory is lost, but data is not lost from the nonvolatile sec-
tions. The program is stored in the nonvolatile sections of main memory.

Registers which are located in main memory are built of RAM, so when in service,
they can be changed by our firmware and the CPU. The quantity of main memory
registers is partly dependent on the quantity of modules in the microcontroller, which
varies from one model of MSP430 to another. The amount of RAM is also dependent
on pricing, meaning that some microcontrollers have more RAM than others in order
to accommodate larger amounts of volatile data which our program may create and
use.

Registers are typically distributed across the lower addresses in memory. The size of
a main memory register will be either or bits wide. Do not get the size of
a register confused with the fixed size of storage at an address; they are not the same

8 Introduction

thing. Register size is a logical expression of storage space, while address storage
size is a physical expression of storage space. This definition will become clearer
when you start learning how to use registers.

Many registers are bits wide; therefore, they have a single address. But if the
register is bits wide, it’s comprised of two adjacent addresses in memory. So
technically, those wider registers have a and address, but from a pro-
gramming point of view, only the address is needed for reading and writing
into those bit registers. Those technical details will be abstracted away with
programming symbols called register variables, as will be explained later.

Since registers are located in the volatile sections of main memory, when the micro-
controller starts or restarts, our program will typically have to configure those regis-
ters to some extent before the modules can be put into service. To some extent means
that most registers will automatically be loaded with default data which may not need
to be changed and represents an acceptable or preferred configuration for operating
the module. The reset system handles the loading of that data, and it is called system
initialization data.

Diagram 1: This is the structure of individual storage places in main memory. The first three addresses in
memory are shown here. Every address in main memory can store one byte of bits. The lower addresses in
main memory are where the registers are located.

What is a Main Memory Register used for?

Registers located in main memory are used for setting up, configuring, monitoring,
and operating various systems and modules. They provide the means for our program
to get and put data into modules. Most registers are completely dedicated to an indi-
vidual module, while a few are dedicated to handling two or more types of modules.

CPU Registers

Registers located inside of the CPU are called CPU Registers, and they are some-
times referred to as machine registers. The CPU is built with many registers which
have specific purposes, but in the MSP430, only sixteen of them can be accessed with
our firmware. And out of those sixteen, we will be concerned with only one of them.
It’s called the status register.

Fourteen of the CPU registers are built of volatile type storage technology. The
remaining two nonvolatile registers are called constant generator registers. The data

Memory addresses in hexadecimal notation.

Amount of memory at every address is 8 bits wide (1 byte).

Memory addresses in decimal notation.

Addresses increase to fill the main memory’s address space.

Bitfield 7 Bitfield 6 Bitfield 5 Bitfield 4 Bitfield 3 Bitfield 2 Bitfield 1 Bitfield 0

Bitfield 7 Bitfield 6 Bitfield 5 Bitfield 4 Bitfield 3 Bitfield 2 Bitfield 1 Bitfield 0

Bitfield 7 Bitfield 6 Bitfield 5 Bitfield 4 Bitfield 3 Bitfield 2 Bitfield 1 Bitfield 0

0

1

2

T. N. Krnich 9

in them do not change. They contain numbers, such as and which
are commonly used in firmware instructions. This mitigates the need for the CPU to
fetch them from main memory where our firmware is located. If using the C pro-
gramming language, instead of the Assembly language, the MSP430 complier sees
these numbers in our firmware, and it will automatically edit our code to use the data
supplied by the constant generator register.

The status register contains data about the microcontroller’s operating state. From a
programming perspective, we are mostly concerned with the status register bitfields
which control the clock module and which can block CPU interruption signals, also
called interrupt requests (IRQ). The clock is used for producing accurate square wave
voltage signals which are used by all systems and modules so they can run and be
synchronized with each other. As for the interrupt signals, they ask the CPU to stop
what it’s doing and execute a specific instruction in our program called an interrupt
service routine (ISR). Requests from some modules can be blocked by manipulating
a specific bit in the status register.

And finally, except for the constant generator register and status register, the CPU
registers are designed to accommodate the width of any address number in the mem-
ory module. Since these registers handle the addresses to data, and not the actual data
itself. For an MSP430 which is built of the conventional MSP430 CPU, it must be
able to access an address space having address numbers ranging from to
bits in width, while CPUX be able to access a space which reaches up to bit
address numbers.

Other types of CPU registers, which are of no immediate concern to us as beginners,
will handle the actual data and manipulate it, based upon our program’s instructions.
After we become more experienced with developing firmware, those unoccupied
CPU registers can be utilized for storing data which can be accessed very quickly.

Summary

Data can be understood as electrical signals and binary numbers. When entering and
leaving the microcontroller, they are in the form of analog and digital electrical sig-
nals. When they are inside of the microcontroller, they are in the form of binary num-
bers so the CPU can process them.

The MSP430 is built of components called system modules and peripheral modules.
The system modules are used for carrying out the program instructions and support-
ing the program in some way. For example, the CPU, memory, power management,
and timer are system modules. Peripheral modules are interfaces in between the CPU
and devices which the microcontroller is monitoring and controlling. Meaning, they
are used for monitoring and controlling peripheral devices. A peripheral device can
be in the form of, for example, a switch, sensor, actuator, display, or some application
specific integrated circuit.

This book will refer to the program that we develop and load into the MSP430 as
firmware or just the program. It will not be called software.

10 Introduction

The native data word size for the MSP430 is bits wide. The MSP430 may
come with either a standard CPU or the CPUX. The standard CPU can handle a
memory address space that ranges from to addresses, while the CPUX
can handle an address space that ranges from to Both CPUs have the
same native data word size.

A register is a place of volatile storage. It can be or two bits in
width. There are two types of registers. The first type of register is called the main
memory register. They are located in the addresses of the memory module, and
they act as the data interfaces to a modules. A register is the interface where our pro-
gram can put data into a module or get data from a module. When putting data into a
module, we are either configuring or driving the module. When getting data from the
register, we are either monitoring the module or having it return some type of infor-
mation which our program needs for some purpose. Although an individual address
in main memory will physically have one of space, a single register may be con-
structed of or even adjacent addresses in memory.

The second type of register is called the CPU register, and it is located in the CPU.
There are CPU registers which our program can read and write into, but we
are basically interested in one of them. It’s called the status register, and it is used for
controlling the microcontroller’s operating mode and for blocking CPU interruption
signals. Such interruption signals are used for triggering interrupt service routines
(ISR). CPU interruptions and ISRs allow us to develop event-driven programs. The
MSP430 is designed to be under the control of an event-driven program.

This book has three purposes. The first one is to explain how to write programming
instructions which can read and write into the MSP430's registers. The second pur-
pose is to explain the fundamental structure of an event-driven program. And the
third purpose is to explain how to write programming instructions which prepare the
MSP430 for work.

Chapter 2

Visualizing How the MSP430 Operates

Within the context of computing, a view is either a picture of a process, a structure, or
both. It contains elements and their relationships which describe a process or struc-
ture.

Views can be produced within a range of abstractions. Meaning, views of greater
abstraction show less detail, while views of less abstraction show greater detail.
When learning about something new, we typically start with views which show high
amounts of abstractions and then progress to views which show lower amounts of
abstractions.

We are concerned about learning how to write a program which instructs the MSP430
to handle one or more event-driven processes. That is the firmware program’s pur-
pose and objective. Therefore, we are interested in viewing progressively different
amounts of abstractions which show how it carries out that process. This chapter pre-
sents six different views which are arranged from high to lower amounts of abstrac-
tions. And most of the views are within an event-driven context.

That context is the fundamental concept which we must view the operation and appli-
cation of the MSP430. It is designed and engineered to handle processes in that spe-
cific context.

The first view, called the basic view, is the most abstract picture of the microcontrol-
ler’s operation. It shows a simple and easy to understand picture of its purpose and
operation. It provides a starting point for visualizing how the MSP430 can be applied
to create a product, but in a very abstract way. The second view, called the power-up
view, goes into a little more detail about its operation. This is an important phase
which every MSP430 goes through in order to prepare itself for work. The third view
is a detailed view of how the MSP430 handles event-driven processes, the work
which it is meant to do. There are actually two event-driven views. One handles inter-
nally occurring events, and the other handles externally occurring events.

The first three views are published nowhere else except by this book. They provide
the visual foundation we need for understanding how a proper program basically
instructs the MSP430 to handle event-driven processes. The remaining three views
are published by Texas Instruments through their user guides and data sheets.

The fourth view is called a functional block diagram. It only appears in data sheets,
and it shows the all elements which make up a specific model number of MSP430.
The fifth view is called a pin designation, and it shows us which functions are avail-
able at every pin on the microcontroller’s case. It is also a physical representation of
the case. The sixth, and last view, is called the module functional view. It is a detailed
picture of how an individual module is configured and operates. All module func-

12 Visualizing How the MSP430 Operates

tional views, except for one type, are published by the microcontroller’s user guide.
The remaining type of functional view is of the microcontroller’s ports, and they are
published by its data sheet.

Basic View

When beginning to imagine or visualize the operation of an MSP430, this basic view
provides a place to start. The operation is understood as being within an event-driven
context.

Diagram 2: Basic view of how the MSP430 operates.

Events are categorized as external and internal. External events are in the form of

During power-up, the firmware program had configured the microcontroller to sense
for some type of event. When the event is sensed,

 The purpose of the work it to produce
some specific type of output voltage signal. The signal communicates information to
a peripheral device or drives it in some way.

Power-up View

Power-up should be understood as a very short period of time or operating phase
where the microcontroller is preparing itself for work. It does not accept any input
signals, nor does it produce any output signals during this time.

Diagram 3: Power-up view of how the MSP430 operates.

Four microcontroller elements are involved during this phase:
. Some

peripheral modules will act as input modules, while others will act as output modules.

Microcontroller

MicrocontrollerCPU gets and executes the
program. The program has
instructions for configuring the
module registers.

Modules are aware of data
changing in their registers. They
use the new data to configure
themselves appropriately.

T. N. Krnich 13

No elements are involved, except for power. The purpose of the
module is to be a location where the are stored.

The power-up sequence begins when

 This phase is called power

ramp-up, and it typically takes about ten microseconds.

Once all systems are properly energized, the CPU control logic loads the first instruc-
tion of the program into the CPU and then puts the microcontroller into the active
operating mode. The CPU can then begin to execute the instructions in the program.

During power-up, the program has a single objective:

The modules are always aware of
data changing in their own memory registers, so when a change occurs, they read and
use the register data to configure themselves.

The last instruction in the program puts the microcontroller into some low powered
operating mode called sleep. Only specific events, which the modules are configured
to sense and monitor, will interrupt the microcontroller from its low powered state.

Event-Driven Views

After the power-up scenario has completed, the microcontroller is typically in some
low powered operating mode. It is characterized as some level of sleep when it is
monitoring for events which it was configured to handle. When an event occurs, the
microcontroller enters the active operating mode to handle the event. And when fin-
ished, it returns to the same operating mode from where it was wakened. An event-
driven view shows the MSP430’s operation from the point in time when an event
occurs to the point when the result of the event produces an output signal. This is the
type of operation which the MSP430 was designed to carry out.

There are two different event-driven scenarios which we are concerned with. The
first scenario involves an event which occurs from inside of the microcontroller, and
the second scenario involves an event which occurs from outside of the microcontrol-
ler. Since it provides a framework from which the externally produced event is built
upon, we’ll begin with a view of an internally produced event.

View of an Internally Occurring Event

Internally occurring events are produced by modules which are located inside of the
microcontroller. This view, of how an internally occurring event is handled, involves
two modules and a peripheral device. One module is in the form of a and the
other is in the form of a module. And the peripheral device is in the form
of an

14 Visualizing How the MSP430 Operates

An overview of the process goes like this.

.

Diagram 4: View of how an internally occurring event is handled.

After the power-up, the program had configured the timer to count through a range of
, called an interval, so when it reaches the end of the interval, a timer

overflow occurs. An overflow means the timer has reached the end of the interval.
Furthermore, the timer had also been configured to set a CPU interrupt flag (IFG)
when that event occurs. An IFG is just simply a single bitfield in a particular timer
register which triggers an interrupt request (IRQ) signal to be sent the CPU interrupt
system.

Be aware that the various low powered operating modes are created by progressively
removing the clock signal, and possibly power, from an increasing number of mod-
ules. The particular mode in this scenario (the exact one is irrelevant for now) will be
able to provide a clock signal and power to the timer module.

Steps 1 and 2

The process begins at step 1 when the timer overflows. That is our internally pro-
duced event. An overflow automatically

.

CPU Interrupt System Behavior

All IRQs have a priority level which is assigned by their in a dedicated sec-
tion of memory called the . The various levels are published by
the microcontroller’s data sheet in a section which is typically named “

” The as a list of ISR vectors.
A vector is a cross-reference between

Microcontroller

In this case, the internal event
is produced by this module.

A new register configuration
will automatically drive the
module.

T. N. Krnich 15

The CPU interrupt system also acts as an IRQ filter. Meaning, some IRQs may be
blocked from interrupting the CPU while others are not. The filter is activated by
using a firmware instruction to set a bit in the CPU status register. That bit is typically
named the general interrupt enable (GIE) bit. The set of requests which can be
blocked are called maskable CPU interruptions, and such requests are produced by
peripheral modules. The set of requests which cannot be blocked are called non-
maskable interruptions (NMI), and such requests are produced by system modules.
Non-maskable interrupts can be further categorized as a user NMI (UNMI) or as a
system NMI (SNMI). The typical UNMI is caused by an input signal coming from
outside of the microcontroller; for example, from a button used for restarting the
microcontroller. An SNMI is cause by a system module located inside of the micro-
controller; for example, a low voltage at the power supply pin will cause an SNMI.

A timer overflow flag will typically produce a maskable interrupt request.

Step 3

Now back to the view of how an internally occurring event is handled, as shown on
page 14. Once the CPU interrupt system finds the vector (VTR) for the request
(IRQ), it loads the ISR’s memory address into the CPU (3), and then the interrupt sys-
tem puts the microcontroller into active mode.

Steps 4, 5, 6, and 7

Once the microcontroller is in active mode,

 The last instruction in the ISR will typically clear the IFG bitfield
to 0, and once that is done, the microcontroller is automatically put back to sleep.

C, Assembly, and the Final ISR Instruction

If our firmware is written in the C programming language, the MSP430 complier will
automatically add a final ISR instruction that puts the microcontroller back into the
operating mode from which it was in. If our firmware is written in the Assembly pro-
gramming language, we would have had to write that last instruction. This book will
be using the C language.

Step 8

At step 8, the output signal is conditioned into a form which will properly drive the
 peripheral device. This conditioning is carried out by a circuit, which is located

16 Visualizing How the MSP430 Operates

outside of the microcontroller, and which provides the interface between the micro-
controller and the peripheral device.

View of an Externally Occurring Event

Externally occurring events are produced by peripheral devices which are connected
to the outside of the microcontroller.

Diagram 5: View of how an externally occurring event is handled.

This view, of how an externally occurring event is handled, contains two peripheral
devices and a microcontroller. In this case, one device is in the form of a button that
produces an input voltage signal. That signal is our externally occurring event. The
other device is an

While this view shows the input module and output module as separate modules, a
single digital I/O module could be, and typically is, configured to handle both sig-
nals.

During power-up, the program had configured the input module to watch for signals
on a specific pin and trigger a specifically written ISR to handle the event.

And finally, like the internally occurring event, this scenario also begins with the
microcontroller in some low powered operating mode of sleep. But it is a mode
where the digital I/O module is continually active, or it becomes active, when it
senses an incoming signal.

Steps 1 and 2

When the button is pressed, it sends a

.

Microcontroller

Output
Peripheral
Module

CPU
Peripheral

Device
Peripheral

Device
Input Signal
Conditioning

Externally occurring
event

7

T. N. Krnich 17

Steps 3, 4, and 5

When the input signal appears at the input pin (3), the module senses the

Then at step 5, the module then produces an interrupt request signal (IRQ).

Steps 6 and 7

When the CPU interrupt system receives the IRQ, it first determines th

and then it puts the microcontroller into
active mode. The term VTR refers to the CPU interrupt vector.

Steps 8, 9, 10, and 11

Once the microcontroller is in active mode, the CPU fetches the first instruction of
the ISR from main memory (8), and then it begins to execute the ISR. Instructions in
the ISR tell the CPU to

 The last instruction in the ISR will typically clear the IFG bit-
field to 0, and once that is done, the microcontroller is automatically put back to
sleep.

Since our firmware is written in the C programming language, the MSP430 complier
will automatically add that final ISR instruction which puts the microcontroller back
into the operating mode from which it was in. Meaning, the specific mode it was in
before the event occurred.

Step 12

At step 12, the output signal is conditioned into a form which will properly drive the
 peripheral device. This conditioning is carried out by a circuit, which is located

outside of the microcontroller, and which provides the interface between the micro-
controller and the peripheral device.

Functional Block Diagram View

This and the following two views are what Texas Instruments will typically publish
in their user guides and data sheets. A functional block diagram will appear in the
microcontroller’s data sheet. Its purpose is to show us which modules are built into
the microcontroller, what are their basic capabilities, which modules are connected to
the memory bus, the basic set of pins built into the case, and which modules the pins
are connected with. It does not show how these modules operate and work together.

18 Visualizing How the MSP430 Operates

In this case, the diagram is about an MSP430FR2433, and it represents what is typi-
cally published as a functional block diagram. The only change to this type of view
will be more or less modules, since that depends on the microcontroller model. How-
ever, this particular diagram does show the basic set of modules which we’ll see
across most models of MSP430 microcontrollers.

The user guide for a family of MSP430 microcontrollers will describe these modules
in further detail, along with other modules which a family member may include. And
the data sheet will go into specifics. Both documents can be found on the microcon-
troller’s home page at ti.com.

Diagram 6: The functional block diagram as would be published by the microcontroller’s data sheet.

Memory Modules

The first matter to be aware of is the two memory modules which are named FRAM
and RAM. They represent main memory, and they have often been referred to as a
single module for two reasons. The first reason is to simplify the discussion, and the
second reason is because a single memory address space actually spans across both of
these modules. The lower addresses are built of volatile random access memory
(RAM), while the higher addresses are built of non-volatile ferro-electric RAM
(FRAM). Registers are located in RAM, while our program is located in FRAM.
Data sheets will often refer to RAM as SRAM (static random access memory).

We learned earlier that the address space for the MSP430 CPU ranges from 0 to
 while the CPUX goes to and that each address will store a of

data. Every MSP430 uses one or the other of these address spaces, depending on
which CPU is built into it. However, the amount of actual usable memory in an
MSP430 will vary from model to model.

Power
Management

Module

16-Mhz CPU,
Including

16 Registers

LFXT

Clock
System

ADC

Up to 8-ch
Single-end

10-bit
200 ksps

FRAM

15KB+512B

RAM

4KB

MPY32

32-bit
Hardware
Multiplier

I/O Ports
P1, P2

2×8 IOs
Interrupt

and Wakeup
PA

1×16 IOs

I/O Ports
P3

1×3 IOs
PB

1×3 IOs

SYS

Watchdog

CRC16
16-bit
Cyclic

Redundancy
Check

2×TA
Timer_A3

3 CC
Registers

2×TA
Timer_A2

2 CC
Registers

2×eUSCI_A
(UART,

IrDA, SPI)

eUSCI_B0
(SPI, I2C)

RTC
Counter
16-bit

Real-Time
Clock

BAKMEM
32-byte
Backup

Memory

LPM3.5 Domain

EEM

JTAG

SBW

TCK
TMS

TDI/TCLK
TDO

SBWTCK
SBWTDIO

DVCC
DVSS

RST/NMI

XIN XOUT P1.x/P2.x P3.x

MAB
MDB

Microcontroller Case

T. N. Krnich 19

This means that for microcontrollers which are built with less than kilobytes
of memory, not every address in the space is used. Those unused addresses spaces are
typically placed somewhere in the middle of the address space in order to maintain
program code at the top of the space and registers at the bottom of the space.

The function block diagram for this MSP430FR2433 shows that RAM is 4KB (kilo-
bytes) in size, in other words, it occupies four thousand addresses which are each a
byte in size. FRAM occupies 15KB with an additional 512B (bytes). And this too can
be expressed as fifteen thousand addresses which are a single byte in width, along
with an additional five hundred and twelve addresses of the same width. To learn
what that additional address space is used for, we refer to the data sheet. In this case,
the section named Memory Organization, states that it’s used for information mem-
ory, which means, that space stores factory information about the microcontroller.
For example, calibration data that can be used for adjusting the accuracy of the real
time clock (RTC) module.

Memory Buses

Two memory buses interconnect all the modules, except for the JTAG and SBW
modules.

The memory address bus (MAB) transports main memory addresses, and it is either
sixteen or twenty bits wide, depending on the size of the overall address space.

The memory data bus (MDB) transports data to and from the addresses in memory.
Although each address only stores a byte, the data bus is sixteen bits wide, so it can
transport two bytes. That means a byte from two adjacent addresses. The data bus
width accommodates the native word size of the CPU, which is sixteen bits.

Keep in mind that data basically flows along the buses like this:

and the
modules write into their registers when they have to update them.

Power Management Module

At the upper left corner of Diagram 6 is the power management module (PMM). It is
responsible for

 during operation. Inside of this mode are subsystems which help the module
carry out its work. They are referred to as various types of supply voltage supervi-
sors.

This PMM has two voltage supply connections coming from outside of the microcon-
troller. As was explained earlier, DVCC is a pin that provides a [positive] digital
power supply, while DVSS is a pin that provides digital ground. However, sometimes
a functional block diagram will show an AVSS and AVCC connection. They mean
[positive] analog power supply and analog ground respectively.

20 Visualizing How the MSP430 Operates

The digital supply connections are designed to provide power to modules which pro-
cess digital data, while analog supply connections are designed to provide power to
modules which process analog data. This is based upon the rationale that analog
modules will consume more current than digital modules. For example, a particular
model of MSP430 may contain analog modules which consume more current
than the digital modules. A digital to analog converter (DAC) is an example of such
an analog module.

You may be led to think that the analog and digital terminals must use different
sources of energy, but Texas Instruments will typically recommend that the same
source be used for both connections. This is to allow us to simultaneously measure
the current consumed by those two types of circuits. The data sheet will provide such
information by searching for AVCC.

Also going into the PMM are the RST or NMI signals which typically use the same
pin. These are binary voltage signals which are typically coming from a peripheral
device such as a button or something else. The purpose of this signal is to produce a
user non-maskable interrupt (UNMI) signal. And the pin which monitors for these
signals must be configured to distinguish between the two. When the pin is config-
ured to RST (reset) mode, the signal will force the microcontroller to restart. When
the pin is configured to NMI mode, the signal will trigger an interrupt service routine.

CPU, EEM, JTAG, and SBW Modules

A block that represents the CPU will typically show the CPU’s maximum clock fre-
quency (or operating speed), and the type of CPU. The clock frequency is produced
and handled by the clock module, which can be set by firmware, but the frequency is
ultimately dependent on the supply voltage. Lower voltages will produce lower fre-
quencies. The CPU will be indicated as either being the standard CPU or the CPUX.
Its job is to fetch programming instructions from main memory, execute the instruc-
tions, and write the results of those instructions into main memory registers.

The Spy-Bi-Wire (SBW), Joint Test Action Group (JTAG), and embedded emulation
module (EEM) blocks are to be viewed as having a combined purpose. They are used
for
while our firmware development tool is in debugging mode. The SBW block is a data
interface that translates a Texas Instruments proprietary bi-direct communications
protocol into a JTAG protocol. The JTAG block provides the ability to load and erase
our program. The EEM block provides the ability to test our program. Every MSP430
has these blocks built into them. After the microcontroller has completely gone
through the development process and put into service, these blocks no longer needed.
But they can provide another feature while the microcontroller is in regular service.

Some families of MSP430 microcontrollers have the ability to use these blocks to
protect the microcontroller from unauthorized access. Meaning, we can lock the
microcontroller with an electronic fuse to prevent any access which is attempting to
read the firmware, copy it, or takeover the microcontroller. An instruction in our pro-
gram is used for blowing the fuse. So when the fuse is blown, access to the MSP430

T. N. Krnich 21

through the JTAG interface is permanently disabled. These blocks can also be used
for remotely updating the microcontroller after it has been put into service.

Furthermore, and what is not shown by the functional block diagram, is a program-
mer-debugger circuit which is needed as an interface between the SBW-JTAG blocks
and our personal computer where our program is developed. The circuit is just a final
external data interface between the MSP430 and our computer. When you purchase
the MSP430 as part of a kit called a LaunchPad, a programmer-debugger is built into
it. It enables us to communicate with the MSP430. When the microcontroller is put
into service, this circuit is not needed.

Clock System Module

Every microcontroller has a clock for producing a binary voltage signal that drives
and synchronizes all activity in the microcontroller. They often go by a specialized
name, but this one is just simply named the clock system.

Most, if not all clock modules, are connected with pins on the case to connect an
external oscillating device for driving the clock. Although the clock module is able to
produce its own clock signal, it may not be accurate enough for some applications. So
those pins provide access for a more accurate oscillator, such as a standard quartz
crystal which is built into many watches.

This particular microcontroller, shown by Diagram 6, has a real-time clock (RTC)
module for keeping time which is based upon a calendar, so a watch crystal may be
used for improving its accuracy.

The names for those external clock connections are shown as XIN and XOUT, and
they interface with the LFXT port of the clock, which stands for low frequency exter-
nal. The pins are actually labeled with those names.

Watch crystals are typically referred to as low frequency oscillators, and they oscil-
late at 32,768 Hertz.

ADC Module

Next to the clock module, the functional diagram shows the analog to digital con-
verter (ADC) peripheral module. Its job is to measure an analog voltage signal and
then convert the measurement into a binary number. It’s basically a sophisticated
voltmeter that quickly converts a measurement into a binary number and writes it to a
specific register in memory. The voltage signals are produced by some peripheral
device, such as a thermometer or battery. The firmware program will typically use the
individual measurements to make decisions.

This ADC block is shown as having 8-ch, Single-end, 10-bit, and 200 ksps. Here is
what those specifications mean.

A circuit which consists of a single path from a pin on the case to the ADC module,
and where a voltage can be placed into and be measured by the ADC, is called a volt-
age signal input channel. This ADC has eight channels. An ADC which compares the

22 Visualizing How the MSP430 Operates

voltage on a channel to ground is called a single-ended ADC, while an ADC which
compares the voltage on one channel to another channel is called a differential ADC.
This ADC is single-ended.

Although the resolution for an ADC can be expressed in several different ways, this
one is expressed in bits. It is a 10-bit voltage resolution ADC. To understand what
that means, we must visualize the ADC’s voltage measurement scale from a particu-
lar point of view. We begin to develop that view by first determining the largest deci-
mal number that can be expressed through ten bits. That number is 1,023. Next we
visualize the range of voltages where the signal must be conditioned to swing. Condi-
tioned means to use a circuit that adjusts the actual voltage signal magnitude to
within an amount which the MSP430 can accept. For an MSP430, the range will typ-
ically be from zero to 2.5 volts, but it can be as high as the supply voltage. Next we
divide the measurement range into 1,023 equal parts, which then makes each division
0.0024 volt in width. So in other words, the voltage resolution is 2.4 millivolts, and
that is what ten bits of resolution means.

The last specification shown is the number of kilo samples per second (ksps). This is
obviously a rate, and it means the maximum number of analog to digital conversions
which can be executed during one second. For this ADC, it is 200 ksps. But do not let
the unit of samples per second (sps) mislead you. It actually means the entire process
of taking a sample of the voltage signal, measuring it, then converting it to a binary
number, and then writing it into a register.

One last interesting characteristic about the image of this ADC block is the absence
of the channel inputs. They are implied.

MPY32 Module

The MPY32 system module is used for

Here’s how it basically works.

I/O Ports

Two I/O (input/output) port blocks are shown by the functional diagram. Ports are
numbered in order to distinguish one from the other. And within the microcontroller
industry, this type of port is often referred to as a general purpose input or output
(GPIO) port. Every MSP430 has at least one port.

T. N. Krnich 23

A port has two purposes.

A port will typically have either four or eight channels which interconnect a specific
module with pins on the case of the microcontroller. But some models of MSP430
can have a port with odd number of channels, such as three. Input and output signals
flow across those channels.

Inside of the port is a logic circuit which is called a multiplexer. It is situated in
between the port channels and modules, and it is under the control of our program.
For input signals, it connects a channel with a particular module. For output signals,
it connects a particular module with a channel. The switching process is called signal
multiplexing.

Now let’s take a closer look at what the I/O port specifications mean,

.

Below the block names (I/O Ports) are the labels P1, P2, and P3. That tells us which
port numbers are built into the block. Combining two ports into a single block is only
a logical representation of the port’s function, not a physical representation. Ports 1
and 2 are logically combined to show that they can be programmed as a single port
called PA, which means Port A. And notice that the other block is labeled PB, which
means Port B. This is related to a programming concept, which will be explained
later, that uses a programming symbol called a register variable. Register variables
give our program direct access to the contents of a register so data can be written into
it and read from it. Therefore, the register variable named as PA will give us simulta-
neous access to ports 1 and 2. Notice that block PA includes the notation 1x16 IOs.
That means a single bus which is sixteen channels wide. It obviously takes into
account the buses for P1 and P2. However, each port does have a unique register vari-
able for us to use, and that is how we’ll typically read and write into a register.

Ports can be configured to monitor for voltage signal events which trigger interrupt
service routines (ISR). The block for P1 and P2 shows these ports as being able to
interrupt and wake-up. The word interrupt means that ports 1 and 2 can be configured
to monitor for events which will trigger an ISR. The word wake-up means that the
same events can wake the microcontroller from a low powered operating mode to
trigger an ISR.

24 Visualizing How the MSP430 Operates

Digital I/O Module

A single port channel is not just simply a single channel. It is actually made of two
sub-channels, and both sub-channels are connected to the same terminal pin on the
case of the microcontroller. One sub-channel is used for handling input signals, and
the other is used for output signals. They cannot be used at the same time, so we have
to switch from one to the other as needed.

Control over those sub-channels is handled by a block of logic called a Digital I/O
Module. So an eight channel port has eight of those modules. They’re not shown by
the functional block diagram, but are located inside the port blocks.

Be aware that while one side of those sub-channels are connected to a single pin, the
other sides are connected to a switch called a and a single Schmitt Trig-
ger. The multiplexor is used for connecting a sub-channel to a specific system or
peripheral module. Analog signals typical go through the The trigger is
used for sensing digitally high or low voltage signals, so its used for sensing digital
input signals. Both sub-channels can be configured to set an interrupt flag when a
specific signal occurs, but this feature is typically limited to the first two ports.

When speaking about those sub-channels, we always refer to them as either the input
or output channel for a digital I/O module, or just simply as the channel. A diagram
of such a module is shown by diagram 8 on page 33.

SYS Module

This block represents a module called System Control. It basically represents a set of
different system modules.

The work which this block carries out is done by all MSP430’s. It is responsible for
handling the

 Their operation will be elaborated upon by later chapters.

Be aware that for many models of MSP430, these individual capabilities are built
into their own separate modules. To configure and operate these modules, you write
data into their registers. And to get data from them, you read their registers.

CRC16 Module

The Cyclic Redundancy Check (CRC) system module is used fo

The CRC module can also be used for

T. N. Krnich 25

Checking the integrity of data is a common task which is performed by data transmis-
sion equipment. It is needed because the messages could be corrupted when passing
through strong electromagnetic fields or faulty connections. Those are common sce-
narios which occur in many different types of usage environments.

Here’s how it basically works.

When the time comes to send a message, our program instructs the CPU to initialize
the CRC module by writing a word into the initialization and result register. The
word can be any combination of bits, but a word that is completely made of 1 digits is
typically used. The program then tells the CPU to start writing the data into the data
in register one byte at a time. Every time a byte is written into the register, a new
word of data appears in the initialization and result register. That word represents the
CRC checksum for all the data which has been entered up to that time. When the last
byte of data has been entered into the data in register, the program instructs the CPU
to form the data into a message by appending the checksum to the end of the data.
The program then tells the CPU to use some communications module to deliver the
message. When the peripheral device receives the message, it enters the data into its
own CRC module, or firmware algorithm, to produce its own checksum. The device
also uses the same word to initialize its own CRC module. The delivered checksum is
then compared with the produced checksum, and if they match, the message is uncor-
rupted and ready for use.

The functional diagram shows the CRC module as being a 16-bit module. That
means the checksums it will produce are sixteen bits wide. Some models of MSP430
come with a 32-bit module or both.

Timer Modules

A brief explanation about the timer module is needed before explaining how it is rep-
resented by the functional diagram.

A timer is a system module that provides four different services. It serves as a fre-
quency dependent timer. It serves as a frequency independent counter. It serves as a
module for measuring voltage signaling rates. And it serves as a module for produc-
ing pulse width modulated (PWM) voltage signals.

A timer module has several registers which are used for configuring and operating it,
but for this brief explanation, we are only interested in two of them. One register is
used for counting through an interval (range) of numbers, and it is called the timer
[counter] register. The other register is used either for capturing the count number

26 Visualizing How the MSP430 Operates

associated with an event or for making comparisons between its own contents and
that of the timer register; this register is called the capture-compare register. How this
register is used will depend on whether the timer is configured into the capture oper-
ating mode or the compare operating mode.

An important feature of the timer is its ability to produce CPU interrupt flags (IFG).
It can set flags for timer overflows and external events which it is monitoring. A flag
is used for triggering an interrupt service routine (ISR).

Serving as a Frequency Dependent Timer

When the timer serves as a frequency dependent timer, we use it for

s.

Here is how it works. The timer is first configured into the

Serving as a Frequency Independent Counter

When the timer serves as a frequency independent counter, we use it for

s.

Here is how it works.

.

Serving as a Module for Measuring Rates

When the timer serves as a module for measuring rates, we use it for

.

T. N. Krnich 27

Here is how it works.

Now be aware that event signals can also be produced from inside of the microcon-
troller by our firmware. Therefore, firmware produced signals can be used for mea-
suring the length of time which a set of programming instructions (called a process)
had taken to execute.

Serving as a Module for Producing PWM Voltage Signals

A pulse width modulated (PWM) voltage signal is a digital [square] wave which is
characterized by its frequency and duty cycle. It is not an analog [sinusoidal] signal.

When the timer serves a module for producing PWM voltage signals, we use it for
. For example, it can be used for controlling th

Until now, each service which the timer provides had only needed to use a single
timer register and a single capture-compare register. In this scenario, we’ll need two
capture-compare registers.

Here is how it basically works.

While the timer is counting through each period, it uses the two capture-compare reg-
isters to determine at which point in the period to produce a digital 1 signal and at
which point to produce a digital 0 signal. For example, to produce a square wave hav-
ing a 50% duty cycle over a 1,000 count period, the first capture-compare register is
configured to 500 counts, and the second register is configured to 1,000 counts. So
when the timer begins at zero, it produces a digital 0 voltage signal at its output until

28 Visualizing How the MSP430 Operates

it reaches the count of 499. When the timer counter reaches 500, that number equals
to the number in the first capture-compare register, so the timer produces a digital 1
output voltage signal. The output signal remains at a digital 1 until the counter
reaches 1,000, a number which equals the number in the second register and repre-
sents the end of the period. The process then repeats when the timer begins counting
from the beginning of the period again.

How the Functional Diagram Describes the Timer Module

A timer module is constructed of individual units of logic called blocks. There are
two types of blocks. Every timer has one block, called a timer block, where the timer
register is located. This register is used for counting through a range of numbers. The
second type of block is called a capture-compare register (CCR) block. It is where a
single capture-compare register is located, and along with inputs for sensing events
and a single output for producing PWM signals. A timer module will typically have
two or more CCR blocks.

The example functional block diagram, on page 18, shows two blocks which repre-
sent timer modules. These two blocks are not to be confused with the blocks of logic,
just described, which make up an individual timer module.

Both blocks in the diagram contain three descriptions about their timers: the type of
timer module and how many, their name, and the number of CCR blocks per timer.
Let’s look at the left block. The first description is 2xTA, and it means there are two
Timer A modules. Texas Instruments produces at least three different timers (named
A, B, and D), which vary slightly in capabilities. The second description is just sim-
ply Timer_A3, which will lead to some confusion. There are two timers in this block,
and they are distinguished as being named Timer0_A3 and Timer1_A3. So the word
Timer_A3 just refers to both timers. The third description is 3 CC Registers, and this
means that each timer module has three CCR logic blocks per timer.

eUSCI Module

An MSP430 will typically come with one or more modules which give it the ability
to communicate with peripheral devices by using a specific type of communications
protocol. For example, the universal asynchronous receiver-transmitter (UART) pro-
tocol, the inter-integrated circuit (I2C) protocol, and the serial peripheral interface
(SPI) protocol. A protocol is a set of rules and procedures which specify how the
communications module and peripheral device must transmit and receive messages.

A type of communications module which is currently built into the MSP430 is called
the enhanced universal serial communication interface (eUSCI). It is constructed
with a small set of different protocol capabilities, typically about two or three of
them. Therefore, it has to be configured to use a specific protocol before going into
service. Each configuration is called a protocol mode. And the module will only
operate in one mode at a time.

T. N. Krnich 29

The eUSCI module has many different registers which are used for configuring, mon-
itoring, and operating it. For this short explanation, we are only interested in those
registers which receive and transmit messages to a device. They are often called the
transmit buffer and the receive buffer.

To basically use the eUSCI module, we first configure it into the protocol mode we
need, which also includes that it be configured to set a CPU interruption flag (IFG)
when a message is received. Then we write an interrupt service routine (ISR) that
will respond to the flag. When it is time to transmit a message, our program writes the
message into the transmit buffer register. When the module recognizes that the data in
the buffer has changed, it automatically transmits the message. When the module rec-
ognizes that a message is being received, it automatically writes the message into the
receive buffer and sets the IFG. The flag triggers the corresponding ISR, and the ISR
contains instructions which tell the CPU to get the data by reading the receive buffer.

The example functional block diagram, on page 18, shows two blocks of eUSCI
modules. They both state which type of communications module, the quantity, and
which protocol modes are included. The block on the left says that it contains
2xeUSCI_A. This means that the block represents two eUSCI modules, and both are
type A modules. The eUSCI module comes in at least two types of modules, and they
are distinguished by the protocol modes they provide. In the parenthesis are shown its
protocol modes. IrDA was not mentioned earlier; it means the Infrared Data Associa-
tion protocol. It uses infrared light as the physical medium for message transport.

LPM3.5 Domain

The next two functional blocks are enclosed in a dashed lined box labeled as LPM3.5
Domain. That means that the blocks in this box will still be able to operate while the
microcontroller is in low power operating mode 3.5.

The MSP430 is under the control of different operating modes. When all modules are
energized, that configuration is called active operating mode (AM). To reduce the
consumption of power, there are at least four low powered operating modes. They are
typically referred to as 1, 2, 3, and 4. And each mode reduces the amount of power
consumed by the microcontroller by removing the clock signal, and probably some
actual power, which are supplied to individual modules. When the operating mode
number increases, so does the quantity of modules which are deactivated. Our pro-
gram can put the microcontroller into these modes by writing into specific bitfields of
the CPU status register.

LPM3.5 is a special low powered operating mode which removes power from vola-
tile memory (RAM). That means any data in RAM will be lost when this mode is
entered. Modules which are not affected by this mode are enclosed by the LPM3.5
Domain as shown by the functional block diagram.

30 Visualizing How the MSP430 Operates

RTC Counter Module

The purpose of the real-time clock (RTC) counter module is to incrementally count
through a range of numbers which start at zero and end at some fixed number. We use
it to calculate time, which is typically needed for displaying a time or for marking an
event and its data with a time, also referred to as a time stamp.

Here is how it basically works. A clock signal is selected and fed into the module that
will be used for a timing signal. The signal will drive the module to count through a
selected range of numbers that will incrementally appear in a counter register. The
accuracy of the counting frequency is dependent on the choice of clock signal. The
frequency is then adjusted so that a specific number of counts will represent either a
minute, a second, or a fraction of a second. Another register is used for adjusting the
counting range to what is needed. When the counter reaches the end of the range, we
call this event a counter overflow. An overflow forces the counter to immediately
start counting from zero again. We may call that range a counting period.

To calculate a time, our program must read the counter register to get a count number.
There are two basic scenarios which involve reading that register. Our program can
just simply read the register when needed, or the module can be configured to set a
CPU interrupt flag when an overflow occurs. The flag triggers an interrupt service
routine which then reads the counter register.

The typical functional block diagram will show a box that represents a single RTC
Counter module. The description is very clear. It will say that it’s an RTC Counter,
but one additional characteristic will be included. It describes the size of the counter
register. In this case, the description says it a 16-Bit Real-Time Clock, which means
that the counter register is sixteen bits wide. Therefore, the counting range is from
zero to 65,535.

You may be wondering about the difference between the timer module and the RTC
counter module, since they basically do the same work. The main difference is that
the RTC counter can operate in low power operating mode 3.5 (LPM3.5), while the
timer cannot, or at least, it typically does not operate in that mode.

BAKMEM Module

Earlier, the LPM3.5 Domain was described. It was characterized as a low power
operating mode where power is removed from volatile memory. Therefore, any data
which is stored there will be lost when that mode is entered. That volatile data is in
the form of storage variables and data storage structures (such as arrays). The backup
memory (BAKMEM) module provides a place for storing that volatile data when the
microcontroller enters LPM3.5 operation, and its availability is typically dependent
on an active RTC Counter Module. It’s typically not available without an active RTC.

This module is constructed of a set of nonvolatile registers. Each register has its own
unique name which can be used by our program.

T. N. Krnich 31

The strategy for backing up volatile data is not described by the microcontroller’s
user guide or data sheet, so it is left for us to design. However, the fundamental strat-
egy is to use one or more instructions, which are appropriately placed in our program,
which will copy data from storage variables and structures to their dedicated backup
memory registers. And that work is done before entering LPM3.5.

Like the RTC Counter module, the functional block diagram which describes this
module is also clear. It names the module as BAKMEM. And it also says that it con-
tains 32-byte Backup Memory. That means the module is constructed of thirty two
registers which are each a byte in width.

Pin Designation View

Another and important view we use for learning about how the MSP430 works is
through a pin designation view, which is also referred to as the device pinout view. Its
purpose is to show us the physical shape of the microcontroller’s case, the location of
every pin, and the designated functions at each pin.

Diagram 7: The pin designation view of a microcontroller’s case.

This view is published by at least two different types of documents. It can be found in
the microcontroller’s data sheet, and if it is built into a kit, like one of the LaunchPad
kits, it will appear in the kit’s user guide. Both documents can be found on the micro-
controller’s home page.

The example shown here is of the G2553. The point of view is from directly above
the case, which is always used for pin designation views. Above the case is the title of
the view, as it is typically printed by the data sheet. It states which models the dia-
gram applies to, the number of pins, and the standard package types (TSSOP and
PDIP) for this model.

At the center of the case is a description that says N20 and PW20. Those are Texas
Instruments proprietary case type numbers (also referred to as package options). At
the upper left corner is an orientation circle that indicates the location of pin number
1. Every pin is pictured, along with its number. Next to each pin is its function. Most
pins on an MSP430 are able to provide more than one function, which is why we see
so many functions at a single pin. Behind each of those pins is a multiplexer which
our program may use for selecting a function.

N20
PW20

(TOP VIEW)

1DVCC
2P1.0/TA0CLK/ACLK/A0/CA0
3
4
5P1.3/ADC10CLK/CAOUT/VREF-/VEREF-/A3/CA3
6
7
8P2.0/TA1.0
9P2.1/TA1.1
10P2.2/TA1.1 11 P2.3/TA1.0

12 P2.4/TA1.2
13 P2.5/TA1.2
14
15
16 RST/NMI/SBWTDIO
17 TEST/SBWTCK
18 XOUT/P2.7
19 XIN/P2.6/TA0.1
20 DVSS

KLCT/IDT/6AC/1.0AT/6.1P UCB0SOMI/UCB0SCL/A6/
IDT/ODT/7AC/7A/TUOAC/7.1P /UCB0SIMO/UCB0SDA

1AC/1A/0.0AT/1.1P /UCA0RXD/UCA0SOMI
2AC/2A/1.0AT/2.1P /UCA0TXD/UCA0SIMO

P1.4/SMCLK/ CA4/TCK/VREF+/VEREF+/A4/UCB0STE/UCA0CLK
P1.5/TA0.0/ A5/CA5/TMS/UCB0CLK/UCA0STE

Device Pinout, MSP430G2x13 and MSP430G2x53, 20-Pin Devices, TSSOP and PDIP

32 Visualizing How the MSP430 Operates

Not shown here is the terminal functions table, which is found in the data sheet right
after the pin designation view. That table is a list of every pin, along with their pin
number, their designated functions, and descriptions for every function. We use that
table to learn about the meaning of each function.

Module Functional View

The functional view of a module is a schematic which shows the logical flow of data
through a module, how a module is configured, how a module is controlled, and how
a module is monitored.

Documentation for every module includes a functional view. Such a view is typically
called a System Block Diagram. Every module, except for one, has its functional
view published by their microcontroller’s user guide. That remaining module has its
functional view published by their microcontroller’s data sheet, and that module is
called the Digital I/O Module. Furthermore, the data sheet does not call it a system
block diagram, it is called a port input/output diagram.

Diagram 8 is an example of a functional view. In this case it’s the functional view of
the digital I/O modules in a port. Only one module is shown, but it generically repre-
sents all eight modules (0 through 7) in port 1. On the right is an octagon that repre-
sents the terminal pin on the case of the microcontroller. All functional views use the
same logic symbols as this one, but some views will include symbols which are not
shown here. Texas Instruments publishes a free document that defines many such
symbols. It’s called an “Overview of IEEE Standard 91-1984: Explanation of Logic
Symbols,” and it can be downloaded as document number SDYZ00.

Here is how to interpret the view. The voltage signals will either flow from left to
right or from the right to left, depending on how the module is configured.

On the left side of the view, we see a vertical arrangement of symbols. They are in the
form of filled squares, the end of lines having no decoration, and lines having an
arrowhead. The filled squares represent one or more bitfields which our firmware
may read and manipulate. Squares which represent more than one bitfield will be
connected to a line that represents a bus of lines. The bus is represented by a single
line having a short diagonal line across it with a label above. The label indicates the
number of lines in the bus in terms of bits. The end of lines which have no decoration
will represent paths for voltages signals to enter or exit the module. Lines which have
an arrow will represent a path for a voltage signal and the direction which it must
flow. On the right side of the view, we see a stretched hexagon. That represents a sin-
gle physical pin on the microcontroller’s case.

At the interior of the view we see several other symbols. Many of them represent
logic gates, such as AND and OR gates. The two isosceles trapezoids represent port
signal multiplexers, and the bits in a multiplexer represent the various bitfield pat-
terns needed to switch the path. An empty triangle represents a buffer where the volt-
age signal is held to some low or high digital state. The bowtie, having two triangles
facing each other with a circle in between them, represents a transmission gate. The

T. N. Krnich 33

gate allows a signal to flow from left to right or from right to left, but the circle,
which under the control of another signal, opens and closes the gate. The triangle
which contains a parallelogram that looks like the letter S is a Schmitt trigger. It is a
voltage level sensing circuit, so it is used for determining whether an inbound signal
is a binary low or high signal. And the last remaining symbol which is worth men-
tioning is in the form of a square with the letters S, D, and Q in it. It is a set-reset
block of logic, also referred to as a digital set-reset flip flop gate. It behaves as a
primitive counter. The inputs S for set, and D for data (instead R for reset), will incre-
ment the output Q between a digital low and high signal.

Many functional views include notes, such as we see in the lower right corner of this
example view. In this case, the notes are in the form of a list of pins and their func-
tions. This is a generic functional view of port 1 and its eight pins: P1.0 through to
P1.7. So these notes just simply tell us which functions are available at the pins
depending on which port pin this view represents.

Diagram 8: The functional view of a Digital I/O Module as published by a microcontroller’s data sheet.
Most functional views are published by a microcontroller’s user guide. Since a port is built with a set of
these modules, this is a generic view of modules 0 to 7 in port 1. The terminal pin is shown on the right as
an octagon. While the data sheet calls such a functional view a “port input/output diagram,” the user
guide will call the same type of functional view as a “system block diagram.”

Q

0

1

D
S

Edge
SelectP1IES.x

P1IFG.x

P1 Interrupt

P1IE.x

P1IN.x

To module

P1SEL.x

From Module1
P1OUT.x

P1DIR.x

From SYS (ADCPCTLx)

A0..A7

11

From Module1

DVCC

DVSS

P1REN.x

EN

D

Bus
Keeper

From JTAG

To JTAG

P1.0/UCB0STE/TA0CLK/A0/Veref+
P1.1/UCB0CLK/TA0.1/A1
P1.2/UCB0SIMO/UCB0SDA/TA0.2/A2/Veref-
P1.3/UCB0SOMI/UCB0SCL/MCLK/A3
P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+
P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A5
P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A6
P1.7/UCA0STE/SMCLK/TDO/A7

2 bit

2 bit

10
01
00

11
10
01
00

From Module2
DVSS

34 Visualizing How the MSP430 Operates

Chapter 3

Visualizing the Main Memory

The underlying concept for programming an MSP430, and any other microcontroller,
is being able to write program instructions which can read and write into its memory.
Although the memory is where our program is stored, what are of most concern to us
are the registers in memory. They are used for configuring, controlling, and monitor-
ing the microcontroller’s systems and modules. They are also used for getting data
from a module which our program needs for making decisions, and they are used for
putting data back into a module which are the results of the decisions our program
had made.

Before learning about how to read and write into those registers, we must know about
the types of memory, their structures, and the tables which document and describe the
registers in memory. After we understand these topics, we must then learn about the
reset system, since that knowledge will prepare us to go into much greater detail
about register tables and how to use them. Once we reach that point, we will be ready
to learn how to write code that reads and writes data into a microcontroller’s regis-
ters.

Main Memory Structure

Having a basic knowledge about the structure of main memory is a prerequisite to
understanding microcontroller documentation. We use that documentation for learn-
ing about modules, their registers, and the purpose of individual register bitfields.
And that knowledge allows us to write program instructions which can read and
manipulate those registers as needed.

Main memory is used for storing a firmware image and nothing else. The memory is
also known as the program execution environment. The MSP430 compiler uses our
program code to build an image, and a program development tool, such as Code
Composer Studio, loads the image into main memory.

Main memory can be visualized as a stack of rows. Each row contains an address and
its eight bitfields of storage. A single bitfield is a place used for storing a single bit of
data.

For the conventional MSP430 CPU, the stack will be 65,535 addresses high, while
microcontrollers built with the CPUX will have a stack that is 1,048,575 addresses
high. The range of addresses is called the Main Memory Address Space.

At the lower address numbers, which start at zero, is a section dedicated to all the reg-
isters. Each register has a name which is documented in the microcontroller’s user
guide (found at the microcontroller’s home page). Above the registers are the higher
address spaces which are dedicated sections of memory used for storing various types

36 Visualizing the Main Memory

of volatile and non-volatile data. Volatile program data is data which is produced by
the program during runtime. Information memory is data about the microcontroller
itself, such as calibration data used by our program for calculating accurate times
which vary under temperature. Non-volatile program code is our actual program.
And the interrupt vector table is a cross-reference between interrupt flags (IFGs) and
interrupt service routines (ISRs). The section of extended memory will be some com-
bination of RAM and ROM, depending on the microcontroller model.

Diagram 9: A memory map shows the logical structure of the main memory address space. The actual
physical address space is distributed across two memory modules: the ROM module and the RAM module.
The actual usage of each section of memory will be different from one microcontroller to another, so refer
to its data sheet for that information.

CPU Memory Structure

Like the main memory structure, the CPU registers can also be visualized as a stack,
but one that is only sixteen rows tall. Each row has a register name and contains bit-
fields of storage. The amount of bitfields is based on the address space which the
CPU must access, since they are used for handling main memory addresses. If the
address space is built into a conventional MSP430 CPU, each register contains six-
teen bitfields. If the registers are built into a CPUX, they are twenty bitfields wide.

Two nomenclatures are used for naming these CPU registers.The first one labels the
entire set of registers as R0 through R15, and those are the names which may be used
in programming code. The second nomenclature labels them with conventional
names: the Program Counter, Stack Pointer, Status, Constant Generator, and General
Purpose registers. Our firmware has access to all these registers, but we’ll only be

Memory Addresses Memory Spaces

R
A

M
R

O
M

RA
M

/R
OM

Memory Registers: In the conventional MSP430, the CPU processes data which is in the form of 16-bit words. Two adjacent
addresses of memory are combined to create one word. Such a pair of addresses are conceptually refered to as a memory register.
The address to a 16-bit register is always an even number. This means that the odd numbered address holds the lower byte of the
register (bits 0 through 7), while the even numbered address holds the higher byte of the register (bits 8 through 15).

.

T. N. Krnich 37

concerned with the status register because it controls the operating mode for the
microcontroller and its interrupt system.

Introduction to Register Tables

Although an in depth explanation of register tables will be described later, an intro-
duction to them must be made now to provide some background for a topic about the
reset system which immediately follow this chapter.

A register table describes the register’s name, the bitfield positions, the purpose of
each bitfield, how the reset system initializes them, their behavior during operation,
and the mask name for each bitfield. It is the primary source of documentation that
we need for learning about a register. These tables can only be found in the user guide
for a microcontroller. A user guide is typically written for a single family of micro-
controllers, since a family has many characteristics in common. The guide can only
be found at a microcontroller’s product home page on the Internet.

Diagram 10: An image of a conventional register table. In this case it is the Timer A Control Register.

Most register tables provide an explanation which shows a picture of all the bitfields,
their arrangement within the register, and their descriptions. There are typically two
types of descriptions. One is about the data, meaning, the pattern of bits which may
be written into or read from the fields, and the other is about the behavior they cause
or indicate.

A data description has two purposes.
.

Unused Bits 15-10 Unused

TASSELx Bits 9-8 Timer_A clock source select
00 TACLK
01 ACLK
10 SMCLK
11 INCLK (INCLK is device-specific and is often assigned to the inverted TBCLK) (see the
 device-specific data sheet)

IDx Bits 7-6 Input divider. These bits select the divider for the input clock.
00 /1
01 /2
10 /4
11 /8

MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.
00 Stop mode: the timer is halted.
01 Up mode: the timer counts up to TACCR0.
10 Continuous mode: the timer counts up to 0FFFFh.
11 Up/down mode: the timer counts up to TACCR0 then down to 0000h.

Unused Bit 3 Unused.

TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLR bit is
automatically reset and is always read as zero.

TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending

IDx MCx Unused TACLR TAIE TAIFG
7 6 5 4 3 2 1 0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Unused TASSELx
15 14 13 12 11 10 9 8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

TACTL, Timer_A Control Register

38 Visualizing the Main Memory

Setting a bit means changing the numerical value for a bit to a one digit (1), while
clearing a bit means changing it to a zero digit (0). The second purpose is to indicate
some type of output from the module. Therefore, bitfields are the data inputs and out-
puts from an individual module.

Next to the data description is the behavioral description of the bitfield. It will typi-
cally have many explanations. They include, but are not limited to, the contents of
each bitfield when the microcontroller starts or restarts, whether our firmware can
read and write into the bitfield, and how does the system or module which the register
belongs to will affect or change the contents of the bitfields.

The register nomenclature tells us the name of the register, its programming symbol,
and the individual programming symbol for each bitfield. A programming symbol is
a sequence of alphanumeric characters. When used in our firmware instructions, it
gives us direct access to the register and its bitfields. Later we will distinguish
between two types of programming symbols and how to use them: the register vari-
able and its bitfield masks.

There are two types of register tables which we must be concerned about.

.

Chapter 4

The Reset System and its Subsystems

Since a register table provides information that describes how the reset system affects
a register's bitfields, having some knowledge about the reset system is a prerequisite
for the next chapter which is about register tables. Furthermore, this topic is later
elaborated upon by the “Reset Routines” on page 134.

The reset system is a set of logic circuits which handle a sequence of processes from
when the microcontroller powers up or signaled to reset to when the CPU begins exe-
cuting the firmware. Those processes are called the BOR, POR, and PUC. They also
have a direct affect on the registers. They will initialize or re-initialize the state of
their bitfields. This is important to understand because a program's design must take
into account of the register's state after a power-up or reset.

The reset system basically executes this sequence of operations: to assure the micro-
controller powers up properly and begins stable operation, to initialize the microcon-
troller's registers, and then call the boot program so the firmware execution
environment is initialized. The last instruction in the boot program calls the main()
function so the CPU will begin executing our program.

Power-Up

Power-up is a scenario where the microcontroller is in a completely unpowered state,
what we call off, and then power is applied to it. The first system to begin operating is
the reset system. It handles a controlled power-up by managing the amount of power
supplied and then uses the BOR, POR, and PUC sequence to initialize the registers.
Initializing the registers means writing bits into them so they are in a specifically con-
figured state.

When the reset system is finished, it then loads the address to the first instruction of
the boot program into the CPU, and then puts the microcontroller into the active
operating mode so the CPU can begin executing the boot.

Details of the boot program are explained later, but you should know that the last
instruction in boot program will transfer the flow of program execution to the main()
function by calling it. That function contains the instructions which form the program
we develop and load into the microcontroller.

Reset

Reset is a scenario where the microcontroller is in some type of operating mode, and
then an event occurs which signals the microcontroller to restart at a BOR, POR, or
PUC. A reset will re-initialize the registers, then reboot the microcontroller, then load
the main() function into the CPU, and then put the microcontroller in active mode.

40 The Reset System and its Subsystems

The events which cause a reset are many, and they are described by sections which
follow.

And finally, a reset event produces its own unique interrupt flag, which in turn, pro-
duces a reset signal in the form of a non-maskable CPU interruption (NMI). There-
fore, depending on which flag is set, the reset system will begin at the BOR, POR, or
PUC.

The BOR, POR, and PUC Sequence

An important concept about the reset system is its phased approach to initializing the
registers. Current designs of the reset system use a sequence of three phases which
are called the Brownout Reset (BOR), the Power-On Reset (POR), and the Power-Up
Clear (PUC).

A power-up will execute each phase and in this specific order: the BOR, POR, and
then PUC. A reset will begin the sequence at a particular phase, and the chosen phase
will depend on the type of reset event.

The microcontroller's user guide publishes a diagram that shows the power-up and
every type of reset event, the reset phases, the operating modes, and the flow of exe-
cution through them all. The section is typically named Operating Modes. It gives
you the overall picture of the microcontroller's operation. An image of it is shown on
page 132.

Register Table Bitfields

A register table will show which bitfields will be initialized or re-initialized during a
BOR, POR, or PUC. It is important to take this into account when designing a pro-
gram, so that a power-up or reset event can be properly handled by our program.

Reset Signals

Events which cause the reset system to begin at will vary from one microcontroller to
another, but not by very much. They can be classified as BOR, POR, and PUC sig-
nals.

BOR Signals

These are the events which will typically produce a BOR signal.

• t
•
•
•

•
•

T. N. Krnich 41

• A program instruction manipulating a BOR signaling bit in some power monitor-
ing module register

The reset pin is analogous to the restart button on a personal computer and many
computer controlled devices. A fractional low power operating mode is referred to as
LPMx.5, and it is an extremely low energy mode that removes power from main
memory.

The voltage supply supervisor is typically responsible for monitoring the voltage
level supplied to the microcontroller. If it senses the supply going below a specific
level, a BOR signal is produced. That level is typically 1.8 volts. Low supply volt-
ages are called power brownouts.

False BOR Signals

POR Signals

Current models of the MSP430 typically have two events which will produce a POR
signal.

•
•

PUC Signals

Five types of events will produce a PUC signal.

•
•
•
• A
•

An overflow means that the watchdog timer has counted up to a specific interval of
clock cycles. As for the FRAM error, FRAM technology uses an algorithm that must
write data back to the place where it was read and for checking for the quality of the
written data. If there is an error, that error produces a FRAM uncorrectable bit error
signal. For additional information, see page 134.

42 The Reset System and its Subsystems

Chapter 5

How to Read and Use the Register Tables

A previous chapter had introduced us to the memory register table, and that was fol-
lowed by an explanation about the reset system. We are now ready to go into greater
detail about the register table, since that knowledge is needed for developing firm-
ware code which can read and write into registers.

Registers are used for configuring, controlling, and monitoring a system or module.
For example, a program writes data into a register to configure a module, or a pro-
gram may read data from a register to make a decision, and the result of the decision
is then written back into a register to produce a new module configuration. Registers
are used for telling a system or module to work in a specified way, while a register
table is documentation that tells us about the different configurations which a register
can be put into or appear as.

There are basically two types of register tables. One type is the conventional register
table, and it’s used for describing all types of system and module registers. The other
type is the port register table. It is only used for describing registers which belong to
a digital I/O port module.

The Conventional Register Table

Shown below, by Diagram 11, is a typical register table published by an MSP430 user
guide. All modules, except for the digital I/O, will use this type of table. In this case,
it’s a table for the Timer A module. That module is used fo

 Reaching the end of the interval is also known as . And the
flag may be used as a trigger for executing an interrupt service routine (ISR).

As with many other modules, this is not the only register for Timer A. The purpose of
this register is to provide

.

On the left side of Diagram 11 is a column of numbers that will not appear in a pub-
lished table. It’s printed there to help explain the contents of the table.

Register Variable and Register Name

Shown at line 1 is the table’s title. It is made of the register variable and the register’s
name. The variable is very important to recognize, since a program must use it for

 The variable name appears as TACTL, meaning, Timer A Con-
trol.

44 How to Read and Use the Register Tables

Register Variable

A register variable can be understood from two points of view. One is from a logical
point of view, and the other is from a programming language point of view.

From a logical point of view, a register variable is a structural abstraction of all the
bitfields in a single register. It provides our firmware with a

 It is the primary identi-
fier that we use in our firmware instructions for

r.

Diagram 11: Example of a conventional register table. In this case, it is of the Timer A control register. The
column of numbers which appear at the left side are for descriptive purposes and will not appear in a pub-
lished table.

From programming language point of view, a register variable is a C programming
language preprocessor directive. The C language has several types of preprocessor
directives. This type is a macro. A macro is a set of one or more lines of program-
ming instructions. The instructions, in this case, handle all the pointer operations
needed for accessing the contents of a register at a specific address in main memory.
All register variables, are defined by their own preprocessor directive macro and
declared in the microcontroller’s header file. When we build a firmware image,
instructions which form the macro will .

Without the register variable, we would have to write complex pointer instructions to
specific addresses in main memory in order to . And furthermore,
those pointer instructions would have to be edited with the correct address whenever
we had to port (meaning edit and prepare) our program to run on a different model of

Unused Bits 15-10 Unused

TASSELx Bits 9-8 Timer_A clock source select
00 TACLK
01 ACLK
10 SMCLK
11 INCLK (INCLK is device-specific and is often assigned to the inverted TBCLK) (see the
 device-specific data sheet)

IDx Bits 7-6 Input divider. These bits select the divider for the input clock.
00 /1
01 /2
10 /4
11 /8

MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.
00 Stop mode: the timer is halted.
01 Up mode: the timer counts up to TACCR0.
10 Continuous mode: the timer counts up to 0FFFFh.
11 Up/down mode: the timer counts up to TACCR0 then down to 0000h.

Unused Bit 3 Unused.

TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLR bit is
automatically reset and is always read as zero.

TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending

IDx MCx Unused TACLR TAIE TAIFG
7 6 5 4 3 2 1 0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Unused TASSELx
15 14 13 12 11 10 9 8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

1

2
3
4

5
6
7

8

9
10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

25

26
27

28
29
30

31
32
33

TACTL, Timer_A Control Register

T. N. Krnich 45

MSP430. All this is handled automatically by which are published
by register tables and defined in each microcontroller’s header file, and which are
designed to be used across all models of MSP430 microcontrollers.

When writing into a register, we typically don’t have to be concerned with the
 data size. But when reading it, we do have to be concerned. If we ever need to

read the entire contents of a register, and then assign that data to a storage variable,
our storage variable must take into account the size, or width, of the register. A regis-
ter may be , so the storage variable
should be declared as either a an), or a

) type of data respectively.

Here is why we must take size into account. Declaring a storage variable with too
large of a data type will occupy unnecessary space in memory, while declaring it with
a too small of a data type will amputate some bits from the data.

Also, be aware that all the bits in a register represent a .
Therefore, the data type for the variable must be unsigned. Registers do not typically
store negative numbers. Unless it is some specialized type of data register, such as a
register belonging to the system module which is used for

.

 data types (data which is typed as are actually bit binary num-
bers, so they are the perfect size for storing data which is read from bit registers.

As for and types of data, they can vary in widths among comput-
ers. For the MSP430, types are bits wide, so that data type is good for
reading bit registers. Long types are bits wide, and that type
is good for reading t bit registers.

Opening the Header File where the Register Variables are Declared

When you create a new development project with Code Composer Studio (CCS), the
appropriate header file is automatically added to the project. If we command CCS to
create a main.c file in our project, the file will contain an #include preprocessor
directive that declares a generic msp430.h file, which in turn, includes the specific
header file which is written for the microcontroller. The file will be named with the
model number of the microcontroller and use the H filename extension.

When a register variable or bitfield mask appears in your code, you may view the
header file by

Register Bitfields

At lines 2 through 7 is a diagram of the entire register. Its bitfields are numerically
indicated at lines 2 and 5. There are sixteen bitfields. Module registers are located
inside of main memory where every address can only store eight bits. Therefore, the
sixteen bits in this register must be distributed across two adjacent addresses. The bit-

46 How to Read and Use the Register Tables

fields at line 3 are located at the higher address in memory, while the bitfields at line
6 are at the next lower address. Keep in mind that addresses are of no concern to us,
since we’ll be using the to access them. And if this was an eight bit
register, the diagram would only present eight bitfields.

Notice that field 3 and fields 10 through 15 are labeled as Unused. That’s exactly
what they mean. The remaining bitfields are places which do provide services.
Another conceptually important fact is that the name for each field represents a spe-
cific bitfield mask.

Bitfield Mask

From a logical point of view, a bitfield mask is an abstraction of a specific bitfield or
set of bitfields in a single register. It provides our firmware with an identifier that
directly correlates with the specific field or sets of fields in a memory register. It is
the primary identifier that we use with a register variable for choosing the specific
bitfields in a register that we want to read or manipulate.

From a programming language point of view, a bitfield mask is a preprocessor direc-
tive in the form of a symbolic constant. Meaning, it is an identifier that literally sym-
bolizes some binary number which is sixteen bits or less in width. The number must
express the proper pattern of zeros and ones to act as a mask. The places in the num-
ber where a zero digit is located will indicate that the correlating bitfield must be
ignored, while the places where a one digit is located will indicate that the correlating
bitfield must be read or manipulated. Therefore, the symbolic constant must be a
number that expresses a

.

When the register variable and bitfield mask are used together in a firmware instruc-
tion, the operation is understood as . This will be elaborated
upon by a later section.

The underlying symbolic constant that the mask represents is declared and defined by
its own in the same header file as the register variables.

Bitfield Mask Suffix

Notice that some bitfield masks include the letter x as a suffix. For example, the mask
for fields 8 and 9 is TASSELx. Since the mask represents two bitfields, and two bit-
fields can provide four different patterns of bits, the suffix provides a place in the
mask for distinguishing one pattern from another. At lines 10 through 13 you can see
those four patterns, and each pattern provides us a different option. The replacement
text for the suffix is defined by the header file for the microcontroller.

Be aware that the for the suffix is somewhat intuitive, but until you have
developed enough experience with using them, you will have to read the header file
to obtain the concise replacement text. The replacement will typically be some

 that will numerically begin at zero. For example, the replace-
ment text could be But there is no standard. It might include an under-

T. N. Krnich 47

score; for example,
or some masks the replacement text will be more elaborate, so

reading the header file will confirm the precise suffix.

The Standard Bits

If you are in a hurry, or just simply not interested determining the actual replacement
text for the suffix, the header file provides a set of symbolic constants which can be
used as generic masks. They are called the Standard Bits. By incorporating hexadeci-
mal notation, they are named BIT0 through BIT9 for fields zero through nine, and
BITA through BITF for fields ten through fifteen. So for example, instead of using the
symbol TASSELx for fields 8 and 9, you could use the symbols BIT8 and BIT9 to mask
those same bitfields. Their usage in a firmware instruction will be elaborated upon by
later sections.

Standard bits are commonly used for masking digital I/O registers. However, using
the standard bits instead of the bitfield masks which are designed for masking spe-
cific registers is not a good practice because of three reasons: readability, our compre-
hension of the mask is reduced, and most importantly, code portability across other
MSP430 devices can be negatively affected.

Code Example 1: The standard set of masks for manipulating bits in GPIO registers. This is how those six-
teen standard bits are defined in a microcontroller’s header file. The actual symbolic constants which we
would use in our code are seen as BIT0 through BITF.

1 #define BIT0 (0x0001) //in binary format: 0000 0000 0000 0001
2 #define BIT1 (0x0002) //in binary format: 0000 0000 0000 0010
3 #define BIT2 (0x0004) //in binary format: 0000 0000 0000 0100
4 #define BIT3 (0x0008) //in binary format: 0000 0000 0000 1000
5 #define BIT4 (0x0010) //in binary format: 0000 0000 0001 0000
6 #define BIT5 (0x0020) //in binary format: 0000 0000 0010 0000
7 #define BIT6 (0x0040) //in binary format: 0000 0000 0100 0000
8 #define BIT7 (0x0080) //in binary format: 0000 0000 1000 0000
9 #define BIT8 (0x0100) //in binary format: 0000 0001 0000 0000
10 #define BIT9 (0x0200) //in binary format: 0000 0010 0000 0000
11 #define BITA (0x0400) //in binary format: 0000 0100 0000 0000
12 #define BITB (0x0800) //in binary format: 0000 1000 0000 0000
13 #define BITC (0x1000) //in binary format: 0001 0000 0000 0000
14 #define BITD (0x2000) //in binary format: 0010 0000 0000 0000
15 #define BITE (0x4000) //in binary format: 0100 0000 0000 0000
16 #define BITF (0x8000) //in binary format: 1000 0000 0000 0000

Register Bit Accessibility and Initial Condition

At lines 4 and 7, of diagram 11 page 44, are notations that describe the accessibility
and initial condition for each bitfield.

Accessibility means whether our firmware is able to read or write into the field. For
example, all bitfields in this register display the letters rw below them, which means,
each field can be read or written into.

The initial condition means which numerical value automatically appears in the field
after the microcontroller starts or restarts. That value is either a zero or one. The start

48 How to Read and Use the Register Tables

and restart processes are explained by the “The Reset System and its Subsystems” on
page 39.

This accessibility and initial condition information is important for us to take into
account while designing and developing code. If the conditions of a register at either
a POR or PUC are not what our program requires or anticipates, we’ll have to write
instructions which set or clear bits to meet the requirements of our program.

In the example shown by diagram 11, the initial condition for each bitfield is
described with the notation –(0). This means that a POR event will clear the field to a
value of zero, and remain that way until our firmware or some other event changes it.
If a PUC were to be the reset subsystem which initialized the bitfield, the notation
would be -0. A parenthesis will distinguish the difference.

There are many other notations for us to be aware of, and they are all documented by
the microcontroller’s user guide, in the section named “Register Bit Conventions,” in
the guide’s preface.

Bitfield Descriptions

Below the diagram of the register, at lines 8 through 33 of Diagram 11, is a table that
describes the purpose and usage of each bitfield. It typically consists of three col-
umns.

One column is for the field’s mask, a second column identifies which fields the mask
handles, and a third column shows a name for the mask and the purpose of the bit-
field or set of bitfields it handles.

Table 1: The typical register bit accessibility and initial condition table as published by the
preface of a user guide.

Key Bit Accessability and Intialization

rw read/write

r read only

r0 read as 0

r1 read as 1

w write only

w0 write as 0

w1 write as 1

(w) No register bit implemented; writing a 1 results in a pulse. The register bit always reads as 0.

h0 cleared by hardware

h1 set by hardware

-0, -1 condition after PUC

-(0), -(1) condition after POR

-[0], -[1] condition after BOR

-{0}, -{1} condition after brownout

T. N. Krnich 49

In the third column, but below the mask name and purpose, are listed the different
options for configuring the fields. For example, at line 10 we see 00 TACLK. That
means if bit 9 and bit 8 are both zero, then when the Timer A module reads those
fields, it will configure TACLK as the timing signal. Although it is not described by
this register table, the TACLK signal is explained by user guide sections that precede it.
In this case, it is a clock signal that would be supplied from outside of the microcon-
troller, by a device also known as an external oscillator.

Let’s look at one more example. At line 11 we see 01 ACLK. That means if bit 9 is
zero and bit 8 is one, then when the module reads those fields, it will select ACLK as
the clock signal. ACLK is an acronym for the Auxiliary Clock, which is one of the
clocks built directly into the microcontroller. Many acronyms are defined by the glos-
sary located in the preface of the user guide.

Interrupt System Bitfields

There are two in this register (shown by diagram 11) which deserve some
mention, since these types of appear in registers belonging to many other sys-
tems and modules. One is of type interrupt enable (IE), and the other is of type inter-
rupt flag (IFG). Their acronyms are typically prefixed with letters and numbers
which distinguish them as belonging to a specific module or system. In this register
one is called Timer A Interrupt Enable (TAIE), and the other is called Timer A Inter-
rupt Flag (TAIF).

Those bitfields are associated with the CPU interrupt system. If the interrupt enable
field is set, a type of event, which can occur in the module, will set the interrupt flag
and be used for triggering an interrupt service routine (ISR). An ISR then carries out
the instructions which you have written into it. This feature allows you to write
event-driven firmware.

The description for these two interrupt related bitfields does not explain
, but a user guide section that precedes this table does tells us. In this

case, the section is called Timer A Interrupts, and it says that three different events
will set a flag. For this flag, named TAIFG, a timer overflow will trigger it. An over-
flow is just simply when the timer has counted through some specific interval of
clock cycles. The interval is configured with another register.

Using a Register Table and Functional View to Help Develop Code

We use a register table to learn about the bitfields which configure, control, and mon-
itor for signals which are handled by a module. And we use a functional view
(page 32) to learn about the paths where signals enter, flow through, and exit a mod-
ule. Also keep in mind that signals include . The paths are anno-
tated with points where bitfields may the signals.
Those points appear as solid squares and are labeled with the specific bitfield mask
which that point.

50 How to Read and Use the Register Tables

With the knowledge about register tables and module functional view, we have at
least a couple of approaches to developing code for configuring a module. One is a
less abstract, while the other is more abstract. The two are distinguished by whether
the module is documented by a functional view that shows a distinct signal path
through it or not.

Here is how the less abstract, more orderly, approach works.

.

Use the more abstract approach when the module has a functional view which does
not show a through it. This approach will

f

.

Distinguishing between a Digital I/O Module and Port

If you are not familiar with digital I/O modules and ports, the way Texas Instruments
has, and seems to continue with documenting information about them, can be a little
confusing. Generally speaking, a user guide will treat them as ,
while a data sheet will treat them as .

Arguments can be made about whether they are the same thing or not. So in order to
mitigate any confusion, and to create a better context which explains them, this book
will treat the digital I/O module and a port as two different things.

Digital I/O Module

An earlier chapter had introduced the concept that a port contains channels, and that
each channel is actually made of two sub-channels. One sub-channel handles input
signals, so it's called the input sub-channel. The other channel handles output signals,

T. N. Krnich 51

so it's called the output sub-channel. The user guides and data sheets do not use the
sub-channel nomenclature; they just refer to both sub-channels as a single channel
that can be configured as an input path or an output path, but not simultaneously as an
input and output. The module functional view of a port, as shown by diagram 8 on
page 33, and as published by the microcontroller's data sheet clearly shows those
paths.

The purpose of the input sub-channel is to

).

The purpose of the output sub-channel is to

Let's take a closer look at how digital signals are characterized by and for the
MSP430. We know that a digital signal has two states: a low and a high voltage state.
The exact amount of voltage that defines a low or high state is completely dependent
on 1) the amount of voltage supplied to the microcontroller's power supply terminals,
2) whether the voltage is within the context of an input or output signal, and 3) the
model of microcontroller. All that information can be found in the microcontroller's
data sheet. But generally speaking, for digital input voltages, the low state is no
higher than about 40% of the supply voltage, while the high state is no lower than
about 75% of the supply. A filter, called a Schmitt Trigger, handles the input signals,
which is also described by the microcontroller's data sheet. For digital output volt-
ages, the low voltage state is about 0.3 volts above whatever ground is (typically zero
volts), while the high state is about 0.3 volts below the supply voltage.

Port

A port is defined as a set of channels and their supporting circuits where input or out-
put signals may flow through. A set will typically contain eight channels, but some
microcontrollers have ports with fewer channels. Keep in mind that a single channel
is actually two sub-channels, one for input and one for output.

The supporting circuits provide services which maintain the flow of different types of
digital and analog signals. Those services include, but are not limited to, signal
switching, voltage signal buffering, and voltage signal comparing. Therefore, the port
is at the center of a microcontroller's ability to handle different types of signals. So
along with its set of modules, this is why the MSP430 is called a mixed signal proces-
sor (MSP).

When more than one port exists, they are alphanumerically identified; for example,
P1, P2, P3, and so on. Microcontrollers which have many ports will combine adjacent
ports into pairs and name them alphabetically; for example, PA, PB, PC, and so on.

52 How to Read and Use the Register Tables

Port Register Tables

An earlier section had introduced, what this book calls, the conventional register
table. The purpose of that name is to distinguish the typical register table from the
port register tables, since the format is different. Furthermore, there are three differ-
ent formats which are used for describing port registers.

Be aware that port register tables are

Port Channels, Port Register Bitfields, and Port Register Bitfield Masks

A very important concept about programming port registers is the rela-
tionship between a single port channel and a port register's bitfield. This is not
explained by the user guides, it is only implied. For example, port channel 0 is han-
dled by register bitfield 0, while channel 1 is handled by bitfield 1, and so on with the
remaining channels in the port.

Another matter which is not explained by the user guides is about port register bit-
field masks. The bitfields in a port register

First Type of Port Register Table

This may possibly be the first and original type of format used for describing the reg-
isters for a port. The obvious difference between this and a conventional table is that
we see no register bitfields. Furthermore, we see no indication about the number of
channels at the port. The data sheet tells us that information.

Diagram 12: The first type of port register table.

The example table shows a set of registers for a single port, named P1, as indicated
by column one. Every line in the table represents a single port register. Column two
lists all the registers which configure and control the port. Nine are listed here by
name. Be aware that the first and second ports of an MSP430 will typically include
registers for configuring CPU interruptions, while the remaining ports will not have
that feature.

Port Register Short Form Address Register Type Initial State
 Input P1IN 020h Read only -
 Output P1OUT 021h Read/write Unchanged
 Direction P1DIR 022h Read/write Reset with PUC
 Interrupt Flag P1IFG 023h Read/write Reset with PUC
 P1 Interrupt Edge Select P1IES 024h Read/write Unchanged
 Interrupt Enable P1IE 025h Read/write Reset with PUC
 Port Select P1SEL 026h Read/write Reset with PUC
 Port Select 2 P1SEL2 041h Read/write Reset with PUC
 Resistor Enable P1REN 027h Read/write Reset with PUC

T. N. Krnich 53

Column three lists the short form name for each register. The short form is actually
the register variable. So the variable P1IN provides us direct access to the bitfields of
the Port 1 Input register. When you read the descriptions for each register, which are
published by user guide sections which precede this table, these variables will be
described as PxIN, PxOUT, PxDIR, and so on. The letter x represents the port number,
so if there was a Port 2 table shown here, the register variable for its input register
would be P2IN, and so on. This allows the same naming format to be used across all
ports, which makes them easier to remember.

What is not apparent is the size of each register and the details about each bitfield.
The typical port register is eight bitfields wide, where each bitfield handles a single
port channel. The functional details of each register are explained by user guide sec-
tions that precede the table.

It is conceptually important to understand that

The identifiers are BIT0 through BIT7. Only eight identifiers are needed
since a typical port register has only eight fields, unless you have the four channel
port.

Be aware that a port channel number and a terminal pin number are

.

Column four, named Address, lists the precise address to the register in main mem-
ory. If the name of the column was Offset, the number in the column would represent
the amount of addresses which the register is located past a base address for the Port
1 module. The base address is the precise address number in main memory, which is
published by the microcontroller's data sheet, in a section named Peripheral File Map.
For example, if the offset address for the Output register is 02h, then that register is
located two addresses past the module's base address in main memory. The base
address, in other words, is the actual address to the first register for Port 1. Keep in
mind that when developing instructions which read and manipulate register bitfields,
we’ll be using the register variables. Therefore, these addresses will be of no use to
us.

Column five lists the register's [access] type, meaning, whether our firmware can
read or write into it. Notice that the input register is read only, which should make
sense, because our firmware will only be used for reading input digital voltage sig-
nals placed onto a pin. As for the output register, it is used for producing digital volt-
age signals, which means, firmware will have to set bits in the register to do that, but

54 How to Read and Use the Register Tables

firmware can also read this bitfield to determine its state. Clearing an output register's
bitfield removes any voltage output signal at the pin.

Column six lists the initial state of all the bitfields in the register after the microcon-
troller has started or restarted. For the input register, there is a dash, which means that
the state of the bitfield depends on the external signal flowing into the pin. So during
a start or restart, if the external voltage signal coming into the pin is high, then the ini-
tial state at that bitfield is a digital value of 1. As for the output register, its initial
state is listed as Unchanged, which means the register acts like nonvolatile memory:
it permanently stores the state. So when the microcontroller starts or restarts, the state
at which the bitfield was before the start or restart will be that same state. The last ini-
tial state description is Reset with PUC (Power-Up Clear). This means when the
microcontroller restarts at the PUC, the system reset circuitry clears the register bit-
fields to zero. This nomenclature can be confusing because, within the context of
microcontrollers, the word set means to write a digital value of 1 into a bitfield, so
reset could be interpreted as rewriting a 1 into the bitfields. If we have doubts about a
nomenclature's meaning, it's best to write some code to test the behavior of the field
during a start and restart.

Second Type of Port Register Table

The second type of port register table is very similar to the first type.

Diagram 13: The second type of port register table.

The first column, named Offset, lists the number of addresses past a base address in
main memory where the register is precisely located. Be aware that nomenclature
may use names such as base, address, offset, or something like that to denote the off-
set addresses. Don't let this confuse you, because all the port register addresses will
be listed in numerical sequence, starting at 00h (0x00), which is typically the first
address in main memory. And keep in mind that these addresses will typically be of
little or no use to us since we’ll be using variables to access the registers.

The second column, named Acronym, is the register variable. Two variables are
shown here, and their usage presents two points of view. The first view is of a single

Offset
00h
02h
04h
06h
08h
0Ah
18h
1Ah
1Ch

Acronym
P1IN or PAIN_L
P1OUT or PAOUT_L
P1DIR or PADIR_L
P1REN or PAREN_L
P1DS or PADS_L
P1SEL or PASEL_L
P1IES or PAIES_L
P1IE or PAIE_L
P1IFG or PAIFG_L

Register Name
Port 1 Input
Port 1 Output
Port 1 Direction
Port 1 Resistor Enable
Port 1 Drive Strength
Port 1 Port Select
Port 1 Interrupt Edge Select
Port 1 Interrupt Enable
Port 1 Interrupt Flag

Type
Read only
Read/write
Read/write
Read/write
Read/write
Read/write
Read/write
Read/write
Read/write

Access
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte

Reset

undefined
00h
00h
00h
00h
undefined
00h
00h

T. N. Krnich 55

register, and the second view is of a pair of registers. The first register variable, for
example P1IN, is a view of a single register. When using this variable, it should be
clear to us that when using this symbol we are accessing a single register named
P1IN.

The second register variable, PAIN_L, is a view of a pair of registers that belong to a
port named A. Microcontrollers with many ports may logically (not physically) com-
bine two ports into a pair in order to accommodate a different perspective of its ports.
For example, a microcontroller having eight ports may logically combine them into
sets of two: Port A for Ports 1 and 2, Port B for Ports 3 and 4, and so on. Register
variables have been defined and declared in the microcontroller's header file to
accommodate this perspective. So in this table we see PAIN_L, which is an acronym
for Port A Input Register Lower. This is literally the same identifier as P1IN, but
redeclared with the identifier PAIN_L. If the table for Port 2 were shown here, it
would have the acronyms P2IN and PAIN_H. The letters L and H denote the register's
address in main memory. The letter L means the lower address in memory, and the H
means the higher address.

As for the output register and interrupt edge select register, their initial states are
listed as Undefined. Regardless of what the word undefined means, there is always an
initial condition after a start or restart. We just have to figure it out on our own, so
that involves some investigation. Documentation that precedes this table is the best
place to start. Located in the Digital I/O chapter of the user guide, there may be a sec-
tion named “Configuration After Reset.” If not, you may have to go to an earlier
chapter which may go by the name of “System Resets, Interrupts, and Operating
Modes.” In this case, the first section does exist, and it presents two initialization sce-
narios: one after a BOR and another after a POR or PUC. If the scenario is a BOR ini-
tialization, the documentation says all port channels are in a high impedance state
with the port module's functions disabled to prevent any cross current. In other
words, the port is not activated so that there is no voltage at the channel pins and no
current can flow in or out of the pins. If the scenario is a POR or PUC initialization,
the documentation states that the direction registers are set to configure all the chan-
nels as inputs, but the port will not be activated. So when you see a register table list-

56 How to Read and Use the Register Tables

ing the initial conditions as undefined, or something like that, it unfortunately means
you have to determine that on your own. You may have to refer to user guide for
another MSP430 microcontroller for some clues, or ask Texas Instruments.

Third Type of Port Register Table

The third and last type of table format used for describing a port register is very much
like the conventional register table format used for other types of modules.

The example here shows a diagram of the register along with a table that describes
each bitfield as actually published by a user guide. The register is eight bits wide, its
variable is PxDIR, firmware can read and write into each bitfield (rw), and the initial
state of each field is zero (-0). The register is called the Port X Direction Register,
and it is used for producing or sensing digital voltage signals at the pin which the
channel services. Each bitfield has a one-to-one relationship with a port channel. For
example, bitfield 2 will handle signals at port channel 2.

Diagram 14: The third type of port register table.

What is not shown is the port number. That is implied, since this is a generic direction
register diagram for all the ports. So if we were writing an instruction that configures
the direction register for port 1, the variable for that register would actually be P1DIR.

Below the register diagram is the bitfield description table for the register. It is
labeled as P1DIR Register Description. The column named BIT shows the number of
bitfields, zero through seven (7-0), meaning, the following descriptions apply to each
bitfield in the register. The next column, named Field, is incorrectly filled with the
register variable, PxDIR. This is an actual published mistake, since a register variable
is not a bitfield. The actual purpose of this column is unknown, so it reminds us that
nobody is perfect.

PxDIR Register
7 6 5 4 3 2 1 0

PxDIR
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

P1DIR Register Description

Bit Field Type Reset Description
7-0 PxDIR RW 0h Port x direction

0b = Port configured as input
1b = Port configured as output

T. N. Krnich 57

(1b). The notation used there is binary (it would be less complicated to us if just dec-
imal 0 and 1 were used by the description). As we will learn later, the standard bits
are used for clearing and setting bits in these bitfields.

58 How to Read and Use the Register Tables

Chapter 6

Code Composer Studio Usage Tips

Our development tool will be Code Composer Studio (CCS). So we'll also be using it
to load our firmware program into the microcontroller and removing bugs and testing
the program. That work involves stepping through each instruction in the program to
watch its behavior. And part of that behavior is characterized by the storage variables
and registers it manipulates. When CCS is in that state of use, it is in [program] debug
mode. So when in that mode, we'll often be interested in stepping through every sin-
gle instruction, and we'll also be interested in having CCS present the contents of a
variable or register in a desired number format.

Forcing the CCS Debugger to Step through Each Instruction

Forcing the debugger to step through every program instruction involves a setting
which is completely dependant upon the compiler optimization.

Built into CCS is the MSP430 C/C++ compiler. It's used for converting our program
from C or C++ into object code, also known as machine language, a language which
the microcontroller can understand. The compiler is also designed so it can be used to
optimize our program. For example, it will modify our code to improve its execution
speed and reduce the size of it by simplifying loops, rearranging statements and
expressions, and allocating variables into registers. But this has a trade-off when
debugging a program.

Any optimization made to our code will actually change

.

A Texas Instruments document titled as “Debug verses Optimization Trade-Off,”
advises us to start at a high level of optimization, and if we are not able to effectively
test and remove bugs from our program, then lower the optimization until we can. On
the other hand, a seemingly more logical and effective strategy may be to start with
no optimization when testing and removing bugs, and then when finished, raise the
optimization. Neither of these strategies have any supporting evidence.

The compiler has optimization levels which range from zero to 4, with zero being the
least amount. It can also be turned completely off. For a new development project,
the compiler is automatically set to zero.

60 Code Composer Studio Usage Tips

We have a choice of changing the optimization level for the entire development
project or for an individual file of program code.

 To change the compiler optimization for an entire project:

1.

2. .
3.

n

4. .

 To the change compiler optimization for an individual file of code:

1. .
2. .
3.

.
4.

.

5. .

If you want to learn more about this topic, see the
2.

Configuring the Variables View for a Different Numbering Format

While using debug mode for testing and removing bugs from our program code, we'll
be watching the contents of storage variables and registers. We may want to view
those contents in a specific type of numbering format. For example, we may want to
view the data in the decimal, hexadecimal, or the binary numbering format.

If the data is of type float, double, or long double, and you want to see all parts of the
number, meaning, the integer, decimal point, and the mantissa, then select the Default
number format.

 To change the displayed numbering format for debug mode:

1. .
2. If the Variables View window is not open, then do the following.

A. From the .
B. Point to .

3. At the top of the Click on the trian-
gle to open a pop-up menu.

4. Point to , and then select the format which you desire.

Chapter 7

How to Write into a Register

Writing into a register, manipulating the bits in it, and bitwise manipulation all mean
the same thing. It is a program instruction that changes the binary value of a bit in one
or more register bitfields.

Available to us are two methods for manipulating bits. One is called Direct Memory
Access, and the other is called Symbolic Memory Access. The first one uses compli-
cated code, pointers, and requires that we know and keep track of register addresses.
It also does not allow us to easily develop firmware that can be ported to different
models of the MSP430.

The symbolic method is the easy way to manipulate bits in a register, and it’s highly
recommended by Texas Instruments, since they put a lot of effort into producing pro-
gramming tools, source code, and documentation which leverages the use of the sym-
bolic method.

.

Setting a bit means to write a binary value of 1 into a bitfield. Clearing a bit means to
write a binary value of 0 into a bitfield. Toggling a bit means to flip the field from 0
to 1, or from 1 to 0. These are the three programming operations we use for manipu-
lating bits in a register.

Our Model Register

To help explain the concepts used for writing into a register, we’ll use a model regis-
ter table. It is based upon the conventional register table, so it has a register variable,
a register name, bitfields which are numbered, masks for each field, and under each
field is a key that explains its accessibility and initial condition.

Diagram 15: The model register that will be used by this chapter to explain how to develop a programing
instruction which can write into a register.

CtrlReg, Control Register

F L D 0F L D 1F L D 2F L D 3F L D 4F L D 5F L D 6F L D 7

rw-0rw-1rw-0rw-0rw-0rw-(1)r-(0)r-1

01234567

Register NameRegister Variable
Bitfield Number

Bitfield Mask SymbolAccessibility and Initial Condition Key

62 How to Write into a Register

The eight hypothetical masks for this model register are defined as follows. If it were
a real register, these masks would be defined in the microcontroller’s header file.

Code Example 2: The eight bitfield masks for our model register. This how they would be
defined in the microcontroller’s header file. Each mask is #defined as a preprocessor directive
symbolic constant having a single specific value. For example, the mask FLD0 is defined as
the constant numerical value of 0x01, which in binary notation is 1.

1 #define FLD0 (0x01) //binary mask 0000 0001
2 #define FLD1 (0x02) //binary mask 0000 0010
3 #define FLD2 (0x04) //binary mask 0000 0100
4 #define FLD3 (0x08) //binary mask 0000 1000
5 #define FLD4 (0x10) //binary mask 0001 0000
6 #define FLD5 (0x20) //binary mask 0010 0000
7 #define FLD6 (0x40) //binary mask 0100 0000
8 #define FLD7 (0x80) //binary mask 1000 0000

Masking Concepts

Registers can be either eight or sixteen bits wide. Eight and sixteen bit binary num-
bers are used for indicating a specific place or bitfield in such registers. For example,
the eight bit number 10000000 can be used for indicating the seventh bitfield in an
eight bit register, and the four bit number 1000 can be used for indicating the third
bitfield. Keep in mind that the first bitfield in a register is numerically labeled as 0
(zero), and the sequence always begins at the right side of the register diagram. A
binary number is used for identifying one or more places in a register, and that num-
ber is called a bitfield mask.

In the C language, a

The typical microcontroller header file also defines a set of

Setting, clearing, and toggling a register bit are done with Boolean algebra opera-
tions. It is a simple form of math that we need not worry too much about. We only
need to focus on three matters: selecting the register variable, selecting an appropri-
ate mask, and selecting an operator that will set, clear, or toggle the bit.

From a mathematical point of view, the variable and mask are operands, and the
Boolean operation is the operator. The operator is a C language identifier that repre-
sents and carries out a specific type of Boolean operation.

To visually understand how a bitwise operation works, the operands and operator are
setup like a simple arithmetic problem. One operand is put on top of the other with

T. N. Krnich 63

the operator placed to the left. The top operand is the register variable, and the bottom
operand is the bitfield mask. The mask tells the operator which field to manipulate.
For now, it doesn’t matter which operation we use, so the operator is represented as a
box. It could be any operator that sets, clears, or toggles a register field.

Diagram 16: To fundamentally understand how a bitwise
Boolean operation is used for writing into a register, we set
up the operation like a simple arithmetic problem.

Now let’s say that we want to manipulate the bit
in field 3 of our model register. To do that, we
need the register variable and a mask which indicates field 3 as containing the bit we
want to manipulate. Such a mask must represent the binary number 1000 (remember
that the first field is 0). Our model register table conveniently gives us the variable
and the symbolic constant, FLD3, as the mask. After we perform the operation, the
resulting register bits will appear below the line.

Diagram 17: To setup the operation so it will write a bit
into field 3 of our model register, we use the register vari-
able (CtrlReg) and the mask for field 3 (FLD3).

This is how the mask works.

Diagram 18: Now we exchange the register variable with
the actual contents in the register, since that is what the
variable represents, and we exchange the bitfield mask with
the constant binary number it represents.

As you now might see, a mask can be used for
manipulating more than one field at a time just by having the digit 1 placed in one or
more positions in the mask.

Let’s now use this same register variable and mask to set, clear, and toggle a bit in
field 3. The diagram below shows each operation. The operand at the top represents
the contents of the register, as provided by the register variable. Below the register
contents is a mask that represents the bitfield we want to manipulate. The 1 bit in the
mask indicates which field to manipulate. After the operation is performed, we can
see the resulting register bits below the line. Only the field that is identified by the
mask is manipulated.

Diagram 19: Now we place text into the empty operator box to show which operation to carry out. The
example has been duplicated three times in order to represent the three possible writing operations. The
result of the operation is shown below each line, and it represents the contents of the register. So from left
to right, a bitfield register is and toggled.

Resulting Register Bits

Operator

Resulting Register Bits

Operator

Resulting Register Bits

 Operator

Register Bits
Mask Bits

Resulting Register Bits

 1 0 1 0 0 0 1 0
 0 0 0 0 1 0 0 0

 1 0 1 0 1 0 1 0
 0 0 0 0 1 0 0 0

 1 0 1 0 0 0 1 0
 0 0 0 0 1 0 0 0

64 How to Write into a Register

The setting operation writes a 1 digit to field 3, the clearing operation writes a 0 digit
to field 3, and the toggling operation flips the contents of the field. For the toggling
operation, only a single toggle is shown from 0 to 1, but if we toggle the bit again,
it’ll go back to 0.

If the there had been a 1 in any other place in the mask, those corresponding fields
would also be operated upon.

Overview of the Setting, Clearing, and Toggling Operations

By using our model register and the C programming language, the syntax for setting,
clearing, and toggling instructions are all shown here together. Three of the examples
will manipulate a single bit in a register, while the other three will simultaneously
manipulate multiple bits. The actual bitwise Boolean operators, as provided by the C
language, are used in the examples. The word bitwise means the operator will operate
on the operands bit by bit.

The syntax for writing into a register can be written in short form or long form. The
examples shown here are in the long form and short form. The following sections,
which explain how to write these instructions, will describe both forms.

Table 2: The long form of all three operations as used for manipulating bits in a register. Each operation
is shown with two examples. One manipulates a single field, and the other simultaneously manipulates
three fields. Also shown is the name of the operation as known in the C programming language.

Operation Bitwise C Operation Example Code in Long Form

Setting a Single Bit Bitwise OR

Setting Multiple Bits Bitwise OR

Clearing a Single Bit Bitwise NOT-AND

Clearing Multiple Bits Bitwise NOT-AND

Toggling a Single Bit Bitwise XOR

Toggling Multiple Bits Bitwise XOR

Table 3: The short form of all three operations as used for manipulating bits in a register. Each operation
is shown with two examples. One manipulates a single field, and the other simultaneously manipulates
three fields.

Operation Bitwise C Operation Example Code in Short Form

Setting a Single Bit Bitwise OR Assignment

Setting Multiple Bits Bitwise OR Assignment

Clearing a Single Bit Bitwise NOT-AND Assignment

Clearing Multiple Bits Bitwise NOT-AND Assignment

Toggling a Single Bit Bitwise XOR Assignment

Toggling Multiple Bits Bitwise XOR Assignment

T. N. Krnich 65

Setting Bits in a Register

To set a bit means to write a 1 digit into a register bitfield. The operation for setting a
bit is called a Boolean Bitwise Inclusive OR. In the C programming language, the
symbol for this operation is the vertical bar (|).

Setting a Single Bit

To set a single bit we need a register variable, an appropriate bitfield mask, the bit-
wise inclusive OR operator, and an assignment operator. Examples shown here will
set a bit in field 3 of our model register. Therefore, the register variable will be Ctrl-
Reg, and the mask will be FLD3.

Diagram 20: Our model register.

These are the long and short syntax forms which will set a single bit in a register.

Code Example 3: Using the long-form and short-form to set Field 3.

1 //Long-form. Using the OR operation
2 //Short-Form. Using OR-Assignment operator

The register variable gives us the contents of the register (10100010), and the mask
(00001000) tells the operator which field to manipulate. The bitwise inclusive OR (|)
operation compares each register bitfield with their correlating place in the mask.
Places in the mask which contain a 1 will set the bit in the correlating bitfield to 1,
and places in the mask which contain a 0 will not affect the contents of the correlating
bitfield.

Line 1 expresses the instruction in long form.

Line 2 expresses the instruction in short form.

CtrlReg, Control Register

F L D 0F L D 1F L D 2F L D 3F L D 4F L D 5F L D 6F L D 7

rw-0rw-1rw-0rw-0rw-0rw-(1)r-(0)r-1

01234567

66 How to Write into a Register

Diagram 21: Using the OR Operation to set a bit in field 3.

Combining Masks to Create a Single Mask

Whenever more than a single register bit is being manipulated, we must combine
their masks to form a single mask. That mask then can be operated upon by a bitwise
operator.

To create a single mask of two or more masks, an addition operator is placed in
between every mask, and then that sum is placed inside of parenthesis. For example,
to combine the masks FLD3, FLD2, and FLD1 into a single mask, the masks are added
together, and then placed in parenthesis (FLD3 + FLD2 + FLD1). By using our model
register, the sum of those masks will create a single mask that expresses the binary
number 1110.

Setting Multiple Bits

To simultaneously set multiple bits, we need a register variable, a single mask for the
bitfields we need to set, the inclusive OR operator, and an assignment operator.
Examples shown here will set bits in fields 3, 2, and 1 of our model register. There-
fore, the register variable is CtrLReg, and the masks are FLD3, FLD2, and FLD1.

Diagram 22: Our model register.

These are the long and short syntax forms which will simultaneously set multiple bits
in a single register.

Code Example 4: Using the long and short-forms to set Fields 3, 2, and 1.

1 //Long-Form sets fields 1, 2, and 3.
2 //Short-Form using OR-Assignment operator.

The register variable gives us the contents of the register (10100010), and the mask
(00001110) tells the operator which fields to manipulate. We combined masks FLD3,
FLD2, and FLD1 to create a single mask whose sum is 1110.

The bitwise inclusive OR operation (|) compares each register bitfield with their cor-
relating place in the mask. Places in the mask which contain a 1 will set the bit in the
correlating bitfield to 1, and places in the mask which contain a 0 will not affect the
contents of the correlating bitfield.

Register Bits
Mask Bits

Resulting Register Bits

Symbolic View

 1 0 1 0 0 0 1 0

Binary View

 C t r l R e g
|

CtrlReg, Control Register

F L D 0F L D 1F L D 2F L D 3F L D 4F L D 5F L D 6F L D 7

rw-0rw-1rw-0rw-0rw-0rw-(1)r-(0)r-1

01234567

T. N. Krnich 67

Line 1 expresses the instruction in long form.

Line 2 expresses the instruction in short form.

Diagram 23: Using the OR Operation for setting a bit in fields 1, 2, and 3.

Clearing Bits in a Register

To clear a bit means to write a 0 into a register bitfield. The operation for clearing a
bitfield involves two operations. One is called the Bitwise NOT operation, and it is
denoted as a tilde (~). The other is called the Bitwise AND operation and is denoted
with an ampersand (&). It will be called a NOT-AND operation that clears a field to
zero.

Clearing a Single Bit

To clear a single bit we need a register variable, an appropriate bitfield mask, the bit-
wise NOT operator, the bitwise AND operator, and an assignment operator. Exam-
ples shown here will clear a bit in field 7 of our model register. Therefore, the register
variable will be CtrlReg, and the mask will be FLD7.

Diagram 24: Our model register.

These are the long and short syntax forms which will clear a single bit in a register.

Code Example 5: Using the NOT-AND operator to clear Field 7.

1 //Long-Form using the NOT-AND operation.
2 //Short-Form using the AND-Assignment operator.

The operating sequence goes like this. The bitwise NOT (~) inverts each bit in the
mask from 10000000 to 01111111. Next, the bitwise AND (&) compares each field in
the register with each place in the inverted mask. Places in the mask which have a 1
will not affect the contents of the field, but places in the mask which have a 0 will

Register Bits
Mask Bits

Resulting Register Bits

Symbolic View

 1 0 1 0 0 0 1 0

 1 0 1 0 1 1 1 0

Binary View

 C t r l R e g
|)

 1 0 1 0 1 1 1 0

CtrlReg, Control Register

F L D 0F L D 1F L D 2F L D 3F L D 4F L D 5F L D 6F L D 7

rw-0rw-1rw-0rw-0rw-0rw-(1)r-(0)r-1

01234567

68 How to Write into a Register

clear the correlating field to zero. The result is assigned (written) back to the register
variable to immediately update the contents of the register.

Line 1 expresses the instruction in long form.

Line 2 expresses the instruction in short form.

The diagram shows the two step operation needed for clearing Field 7. Notice that the
NOT operation is a unary operation, meaning, it operates on just a single operand.
The AND operator works on two operands, the register variable and inverted mask.

Diagram 25: Using the NOT-AND Operations for clearing field 7 to 0.

Clearing Multiple Bits

To simultaneously clear multiple bits, we need a register variable, a single mask for
the bitfields we need to clear, the bitwise NOT operator, the bitwise AND operator,
and an assignment operator. Examples shown here will clear bits in fields 7, 5, and 1
of our model register. Therefore, the register variable is CtrLReg, and the masks are
FLD7, FLD5, and FLD1.

Diagram 26: Our model register.

These are the long and short syntax forms which will clear multiple bits in a register.

Code Example 6: Using the NOT-AND operator to clear Fields 7, 5, and 1 to zero.

1 //Long-Form.
2 //Short-Form.

Mask Bits
Inverted Mask Bits

Symbolic View

Binary View

NOT OPERATION

AND OPERATION

Register Bits
Inverted Mask Bits

Resulting Register Bits

 0 0 1 0 0 0 1 0

 0 0 1 0 0 0 1 0

CtrlReg, Control Register

F L D 0F L D 1F L D 2F L D 3F L D 4F L D 5F L D 6F L D 7

rw-0rw-1rw-0rw-0rw-0rw-(1)r-(0)r-1

01234567

T. N. Krnich 69

The register variable gives us the contents of the register (10100010), and the com-
bined mask (10100010) tells the operator which fields to manipulate. We combined
masks FLD7, FLD5, and FLD1 to create a single mask whose sum is 10100010.

Line 1 expresses the instruction in long form.

.

Line 2 expresses the instruction in short form.

Diagram 27: Using the NOT-AND operators to clear Fields 7, 5, and 1 to zero. According to the C language
precedence of operations, the NOT operation is performed first, and then it’s followed by the AND opera-
tion that clears the fields.

Simultaneously Setting and Clearing Bits in a Register

To simultaneously set and clear bits in a register means to use a single instruction for
setting and clearing bits in a register. We use the same operators, but the syntax is dif-
ferent.

Diagram 28: Our model register.

By using our model register, two examples are shown here. The first example will
clear a bit in field 7 and set a bit in field 6. The second example will clear bitfields 7,
5, and 1, and it will set bitfields 6, 4, 3, 2, and 0.

Code Example 7: The first instruction clears a single bit and sets a single bit. The second
instruction clears three bits and sets five bits.

1 ;
2

Register Bits
Inverted Mask Bits

Resulting Register Bits

Symbolic View

 0 0 0 0 0 0 0 0

Binary View

NOT OPERATION

AND OPERATION

 0 0 0 0 0 0 0 0

Mask Bits
Inverted Mask Bits

 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0

CtrlReg, Control Register

F L D 0F L D 1F L D 2F L D 3F L D 4F L D 5F L D 6F L D 7

rw-0rw-1rw-0rw-0rw-0rw-(1)r-(0)r-1

01234567

70 How to Write into a Register

Toggling Bits in a Register

To toggle a bitfield means to flip the bit so it changes from 0 to 1 or from 1 to 0,
depending on which bit is already in the field. Toggling uses the Bitwise Exclusive
OR operation (XOR). The programming symbol for XOR is the caret (^).

Toggling a Single Bit

To toggle a single bit we need a register variable, an appropriate bitfield mask, the
bitwise exclusive OR operator, and an assignment operator. Examples shown here
will toggle a bit in field 3 of our model register. Therefore, the register variable will
be CtrlReg, and the mask will be FLD3.

Diagram 29: Our model register.

These are the long and short syntax forms which will set a single bit in a register.

Code Example 8: Using the long and short forms for toggling field 3.

1 3; //Long-Form using the exclusive OR operator.
2 ; //Long-Form. Another toggle.
3 ; //Short-Form using exclusive OR-Assignment operator.

The register variable gives us the contents of the register (10100010), and the mask
(00001000) tells the operator which field to manipulate.

The bitwise XOR operation compares each register field with their correlating place
in the mask. Places in the mask which have a 1 will toggle the correlating field.
Places in the mask which have a 0 will not affect the contents of the field.

Line 1 shows the operation with two operands separated by th

.

Diagram 30: Toggling the bit in field 3. The first operation toggles the field to 1, and the second opera-
tion toggles it back to 0.

CtrlReg, Control Register

F L D 0F L D 1F L D 2F L D 3F L D 4F L D 5F L D 6F L D 7

rw-0rw-1rw-0rw-0rw-0rw-(1)r-(0)r-1

01234567

Register Bits
Mask Bits

Resulting Register Bits

Symbolic View

 1 0 1 0 1 0 1 0

Binary View

 1 0 1 0 1 0 1 0

Register Bits
Mask Bits

Resulting Register Bits

 1 0 1 0 0 0 1 0

 1 0 1 0 0 0 1 0

1

2

T. N. Krnich 71

Toggling Multiple Bits

To toggle multiple bits we need a register variable, a single mask that combines all
the bitfield masks we need to toggle, the bitwise exclusive OR operator, and an
assignment operator. Examples shown here will toggle the bits in fields 3, 2, and 1 of
our model register. Therefore, the register variable will be CtrlReg, and the mask
will combine FLD3, FLD2, and FLD1.

Diagram 31: Our model register.

These are the long and short syntax forms which will toggle three fields in a register.

Code Example 9: Using the long and short forms for toggling field 3, 2, and 1.

1 //Long-Form.
2 //Short-Form.

The register variable gives us the contents of the register (10100010), and the com-
bined mask (00001110) tells the operator which fields to toggle. We combined masks
FLD3, FLD2, and FLD1 to create a single mask whose sum is 1110.

The bitwise XOR operation compares each register field with their correlating place
in the combined mask. Places in the mask that have a 1 will toggle the correlating
field. Places in the mask that have a 0 will not affect the contents of the field.

Line 1 shows the operation with an XOR operator separating the register variable and
the combined mask.

Line 2 is the short form of the instruction. It uses

Here is how the operations appear in binary and symbolic views.

Diagram 32: Toggling fields 3, 2, and 1.

Just Simply Writing a Number into a Register

All the writing methods which have been described will ultimately assign a number
to a register which sets and clears its bitfields to our desired states. So by now, you
might be wondering "why do we have to write a complicated instruction which uses

CtrlReg, Control Register

F L D 0F L D 1F L D 2F L D 3F L D 4F L D 5F L D 6F L D 7

rw-0rw-1rw-0rw-0rw-0rw-(1)r-(0)r-1

01234567

Register Bits
Mask Bits

Resulting Register Bits

Symbolic View

)

 1 0 1 0 0 1 0 0

Binary View

)

 1 0 1 0 0 1 0 0

72 How to Write into a Register

several operators and operands in order to write a number into a register?" Why don't
we skip all that work and just assign an appropriate number to the register which will
simultaneously set and clear all the register bitfields?

Well, sometimes during the execution of a program we do not know in advance
which number must be written because some bitfields must be changed while others
or not. So that's the main reason.

But there are scenarios where we know which state we want the entire register to be
placed into. One of those scenarios is when the program is configuring or initializing
module registers before they will be used. That work is typically done at the begin-
ning of a program.

So for such scenarios, we often just use a single number that will properly set and
clear the bitfields all at one time. The number can be written in the binary, hexadeci-
mal, or decimal format. The MSP430 C complier will automatically convert the num-
ber into binary format, and then build the program with that format.

Code Example 10: Assigning a number to an 8-bit register so it will clear fields 7, 5, 3, 1 and set
fields 6, 4, 2, and 0. It can be written in the binary, hexadecimal, or decimal format.

1 // All three instructions write the same binary number into CrtlReg.
2 // Using the binary format.
3 // Using the hexadecimal format.
4 // Using the decimal format.

The one advantage the binary format has over the other two is that we can explicitly
see which fields will be set and cleared.

A typical desktop computer operating system, such as Microsoft Windows, will
include a calculator which can be used as a tool for converting a number from one
format to another.

Writing into Password Protected Registers

Manipulating bits in a password protected register is handled with methods which are
similar to those described earlier in this chapter, but there are some matters which we
must take into account with such registers. That topic is presented on page 176. This
section briefly describes an alternative method for writing into a password protected
register that simplifies the instruction by using the OR operator (|).

Writing into such a register involves an instruction which simultaneously unlocks the
register and sets a bit in some other field which configures a system to behave in
some way. For example, the instruction for putting the watchdog on hold is written
that way. If additional fields must be set, then use the OR operator to include them.

T. N. Krnich 73

Code Example 11: Using the OR operator in a password protected register.
; // Typical instruction for stopping the watchdog.

WDTCTL is the watchdog timer control register. WDTPW is the bitfield mask for the pass-
word, and WDTHOLD is the mask for putting the watchdog on hold. For detailed infor-
mation about the watchdog, see page 89.

74 How to Write into a Register

Chapter 8

How to Declare a Storage Variable

A variable is used for holding data which changes. But unlike the software develop-
ment scenario, MSP430 firmware development with variables must be handled dif-
ferently. First we’ll look at a little history about it, and then we’ll learn how to declare
them in firmware.

A Description for the Storage Variable

The international standard for the C Language does not define the word variable, nor
does it define the compound form (portmanteau) of the words storage variable. The
standard uses the word variable in just a few places, and its definition is only implied.
Although this is a digression, a concrete definition of those words is made here in
order to be thorough.

From the most abstract point of view, all the grammatical elements in the C language,
which provide us the means for writing instructions to form a computer program, are
called objects. This is not to be confused with objects of the C++ language which are
created from classes.

The standard for C defines an object as a region of data storage in the execution envi-
ronment, the contents of which can represent values. In our work, the environment is
a firmware image which is loaded into main memory, and the region of data storage
is the main memory address space.

Once again, from an abtract point of view, what is stored at an address may or may
not represent a numerical value. If it does represent such a value, then what is stored
at the address is a type of operand. If what is stored at the address does not represent
a numerical value, then it represents a type of operator.

Now we can define the storage variable.

A type is a specific category of operator or operand. The different types of operators
are used for performing different types of operations on operands. For example, there
are types of operations which perform relations, bitwise Boolean, assignment, addi-
tion, subtraction, multiplication, and so on. As for operands, they are data in the form
of types of numerical values. For example, there are integer, real floating, Boolean,
and character types of numerical data.

So what we have is a hierarchy of abstractions that define a storage variable. An
object is a storage location in memory. The content may or may not represent a

76 How to Declare a Storage Variable

numerical value. If the content does represent a value, the content is an operand. If
the content does not represent a value, the content is an operator. An operator is
immutable, while an operand is either mutable or immutable. And finally, a type of
operand which is mutable is called a variable or storage variable.

Declaring Storage Variables

A storage variable is declared with one or more data type qualifiers, also referred to
as specifiers. For example, a variable that is declared as an integer can be further
specified as an unsigned integer, or further specified as a long unsigned integer.

In MSP430 firmware, storage variables must be specified as storing volatile type of
data. So for example, a variable that is specified as storing an integer must be further
specified as a .

Code Example 12: To declare a storage variable, we must specify it as Here, the stor-
age variable x is specified as int.

1 = 0x00; //A storage variable specified as type

Here is the rationale.

To mitigate code optimizations which involve variables, we must

Chapter 9

How to Read a Register

The Process

To read a register means to assign its contents to a storage variable or just use its con-
tents as an operand (expression) in an instruction without an assignment. By using
register variables and masks, we can read the entire register or specific bitfields in a
register.

To read a protected register, meaning, a register which incorporates a password, a dif-
ferent technique is used. The watchdog timer and PMM registers are of that type.
That technique is introduced by “Reading the Watchdog Timer Register,” on page 96,
and by another example shown at the end of the last chapter.

When making an assignment, the width of the storage variable must match the width
of the register. For example, declare the variable as a) for
eight bit registers, or declare it as an) for sixteen bit registers.
Furthermore, both types must be declared as because registers are typically
used for storing positive binary numbers. If the register is expected to handle signed
numbers, then be aware that a bitfield is reserved for that sign, so your code must take
that into account with a signed type of data declaration.

When more than one bitfield must be read,

Diagram 33: Our model register. The code examples shown below will read bits from our model register.

Code Example 13: The AND operator (&) is used for reading fields in a register.

1 ; // Declaring our storage variable.
2
3 // Reading a single field
4 // Reading two fields
5) // Reading multiple fields
6 ; // Reading the entire register

The Code

Our model register is eight bits wide, so the storage variable is declared as
 with the symbol result as its identifier. And the variable is initial-

CtrlReg, Control Register

F L D 0F L D 1F L D 2F L D 3F L D 4F L D 5F L D 6F L D 7

rw-0rw-1rw-0rw-0rw-0rw-(1)r-(0)r-1

01234567

78 How to Read a Register

ized to zero (0x00). Alternatively, the number zero could have been in the decimal or
binary format. See page 6 for information about the notation for those formats.

The first instruction reads a single bitfield.
).

The operator compares each place in the variable with its bitwise corresponding place
in the mask. Places in the mask which have a zero will tell the operator to not read the
corresponding place in the variable. Places in the mask which have a 1 will tell the
operator to read the corresponding place in the variable. Places which are not read
will result in a 0. The entire eight bit result is then assigned to the storage variable, in
this case, it is named result.

You must be very careful about how

It reads the value in FLD3 and compares it to the standard bit BIT3. What is being
compared is the result of the reading operation, which will be either 0x0 or 0x4, to the
standard bit BIT3, which is 0x4. If they are equal the resulting decision is true, then
the block of code inside of the curly brackets will be executed.

On line 4, the second instruction reads two bitfields.

The third instruction, and line 5,

While running this code in debug mode, and viewing the values assigned to the stor-
age variable, the numerical notation might be in a format which is not convenient for
you. For example, it might be presented in hexadecimal notation. For instructions
about how to change the format, see

.

Chapter 10

Background for Testing the Contents of a Register

Before the discussion about testing the contents of a register can be presented, we
digress, yet again, with a review about integer constants, relaxed compilers, and
using binary notation in our code.

Integer Constants

Binary notation and testing the contents of a register depend on some understanding
of the integer constant, which we have learned earlier on page 75, is an immutable
numerical value. We all know about whole numbers. It’s a system of numbers that
starts at zero and goes to infinity {0, 1, 2, 3,...}. Whole numbers are not negative
numbers, nor are they fractions. Integers are whole numbers including their negative
values {..., -3, -2, -1, 0, 1, 2, 3,...}.

The C programming language refers to all integers as integer constants. Furthermore,
the language allows us to use decimal or hexadecimal notation to express integers;
meaning, in our code, we have the option of writing the integer ten as either 10 or as
0xA. It’s our choice, and the choice only depends on our preference or need. Keep in
mind that both notations will be converted by the compiler into binary notation, since
from the microprocessor’s point of view, all program code is handled in binary nota-
tion.

The MSP430 Relaxed Compiler

.

A popular complier is the Compiler (It’s a relaxed compiler that has
been extended so we may use binary notation to express a number in our code. The
Texas Instruments Code Composer Studio (CCS) uses GCC, and they have relaxed it
even further. In order to make it easier for us to write programs for their microcon-
trollers, they had to! For example, the language has been extended to include custom
made functions and declarations for interrupt service routines (ISRs). The custom-
ized functions allow our code to easily access the CPU registers, and ISRs are essen-
tial for writing event-driven firmware.

80 Background for Testing the Contents of a Register

Using Binary Notation

Using binary notation in our code is helpful when it is used for making decisions. It
allows us to immediately visualize a numerical value as a pattern of binary bits.

For example,

.

Such decision making code will typically use an unsigned integer, expressed in deci-
mal or hexadecimal notation, to represent the pattern that will be compared with a
pattern in a register or variable. For most of us, the binary representation of a decimal
or hexadecimal integer cannot be quickly visualized without some extra mental
effort. That makes our code harder to read. Therefore, using binary notation in such
coding scenarios will facilitate the quick visualization of the pattern. Especially since
the user guides show the contents of a register as a pattern of bits, and not as some
decimal or hexadecimal representation of an integer.

Here’s the rule for using binary notation in our code:

Enabling CCS Support for GCC Extensions

Unlike older versions, the latest versions of Code Composer Studio will automati-
cally include support for GCC extensions, and it is turned on by default. Therefore,
we no longer have to worry about turning it on. But this information is here in case
that changes again.

Chapter 11

How to Test the Contents of a Register

A firmware instruction can be used for performing an action, such as driving or mon-
itoring some module, and it can be used for making a decision. An action quite liter-
ally means reading and writing into a register. A decision will be in the form of
performing a calculation or comparing one piece of data to other pieces of data, and
then using the decision to produce a result. Testing the contents of a register is one
form of decision making.

The Process

Testing the contents of a register means to read the register’s contents and then com-
pare the contents to an integer.

The result of the decision is a .

The Code

The comparison is done through some type of selection statement and an equality
operator (==). A selection statement is typically in the form of an if statement or sim-
ilar type of selection statement (see “Structures for Program Development” on
page 105“ for an elaboration).

By using a , we can test a specific bitfield in a register.
When more than one bitfield is to be tested, the masks for those fields are combined
to create a single mask (as described by “Combining Masks to Create a Single Mask”
on page 66). If the entire register is to be tested, only the register variable is needed.
Code examples shown below will test bits from our model register.

Diagram 34: Our model register, as introduced by page 61.

Since our model register is only eight bits wide, the comparison will be made with an
eight bit test integer. The test integer is written in binary notation so we can quickly
visualize the integer as a pattern of bits. The type of selection statement used in each
example is the if statement. It makes a Boolean decision that results in a true or false
result or 1 or 0 respectively. For the sake of brevity, the instruction block which fol-
lows the if statement, contains no code. The empty block is denoted with braces { }.

CtrlReg, Control Register

F L D 0F L D 1F L D 2F L D 3F L D 4F L D 5F L D 6F L D 7

rw-0rw-1rw-0rw-0rw-0rw-(1)r-(0)r-1

01234567

82 How to Test the Contents of a Register

Code Example 14: Using a read operation and a decision statement to test the contents of a
register. An if statement is used for making the decision. For the sake of brevity, the instruc-
tion block following the decision has no code. The empty block is denoted with braces {}.

1 /*** Testing a Single Field ********/
2 // If result is true, execute the block.
3 {
4
5 }
6
7
8 /*** Testing Multiple Fields **********/
9 // If true, execute block.
10 {
11
12 }
13
14
15 /*** Testing the Entire Register ***/
16 // If result is true, execute the block.
17 {
18
19 }

Chapter 12

How to use a Pointer to Read and Write into Main Memory

Earlier chapters which are about reading, writing, and testing the contents of a regis-
ter clearly say that a pointer variable is not needed to do that work. So their code
examples do not use pointers nor pointer variables. Instead of pointers, a register
variable is used for accessing the register.

The register variable is just simply an of an actual pointer variable.

eaning, we would have to know and use the actual address
number to a register. And that would make our development work more complicated.

So why do we need to learn about using a pointer variable and the pointer which it
stores? There are a few reasons.

Pointer and Pointer Variable

A pointer is just simply a type of number. It is a type which represents an address
number in main memory. A pointer variable is just simply a type of storage variable.
It is a type of variable used for storing a pointer.

A pointer and a pointer variable are typically not useful by themselves because we
are concerned with the data stored at the address, not the address number itself. A
pointer or pointer variable are combined with a special type of operator that will
access the data at the address. It is called the indirection operator.

Generally speaking, a pointer and pointer variable enable us to develop programs
which can access data at a specific address in memory and to create data structures
which can grow and shrink in memory. We are interested in their ability to access
data in main memory, since that is the only method available for accessing data at a
specific address.

Indirection Operator

A special type of operator is used for working on pointers and pointer variables. It is
called the indirection operator (*), and it has three purposes.

84 How to use a Pointer to Read and Write into Main Memory

The first purpose is used for converting an address number into a pointer. The second
purpose is used for declaring a storage variable as a pointer variable.

After a pointer and its pointer variable have been created, the indirection operator's
third purpose then comes into play. It is used for accessing the data at a pointer. In
other words, it is used for accessing the data at a specific address in memory.

Converting an Address Number into a Pointer: the Pointer Expression

Although a pointer is a type of number which represents an address in memory, it is
written and used as an expression. The expression is in the form of a unary operator
and a number which represents an address in memory. The expression is then used in
an instruction which reads or writes into the address.

The unary operator is called a and it is used for
. In this case, it is used for converting an address number into a

specific type of pointer; meaning, to

.

The amount of data at any address is eight bits, but a pointer can be specified to point
to eight, sixteen, thirty-two, or more bits of adjacent data in memory. For example, a
pointer to eight bits is specified as a char, and a pointer to sixteen bits is specified as
an int. A pointer to more than eight bits in memory is including bits which are at the
next higher addresses in memory. For example, a pointer to address number 0x1A1A
and specified as a sixteen bit pointer is pointing to the bits at 0x1A1A and the next
higher address in memory, 0x1A1B.

Here is how the pointer expression is written.

Be aware that this expression is not a declaration. The pointer, which appears as the
address-number, cannot be used by itself in other instructions or in other places in the
same instruction. The cast is a temporary operation which lasts only during the life of
the operation.

Three types of pointer expressions are shown below.

T. N. Krnich 85

Code Example 15: Shown are three pointer expressions which use the same address for point-
ing to different amounts of data in memory. A pointer to more than eight bits in memory is
including bits which are at the next higher addresses in memory. The address number is the
pointer.

1 // Expression which points to 8 bits
2 // Expression which points to 16 bits
3 // Expression which points to 32 bits

Declaring a Pointer Variable

To declare a pointer variable, we choose an identifier for the variable, then we use an
indirection operator to specify it as a variable which stores a pointer, and then we fur-
ther specify it as storing a pointer which points to a specific amount of data and being
of type volatile.

After a pointer variable has been declared, it can be used for reading and writing data
into a specific address in memory.

Shown by the following code example are three instructions which declare pointer
variables.

Code Example 16: Declaring a pointer variable. The pointer variables are aPtr, bPtr, and cPtr.
The indirection operator (*) specifies the variable as one that stores a pointer.

1 ; // Stores a pointer to 8 bits of memory
2 ; // Stores a pointer to 16 bits of memory
3 ; // Stores a pointer to 32 bits of memory

The pointer variable is further specified as storing a pointer which points to a specific
amount of data in memory.

The final specifier types the variables as being That is in accordance with
all storage variables we declare in a program for the MSP430. The speci-
fier tells the MSP430 compiler to not include this variable when it uses algorithms to
optimize our code which may adversely affect the variable.

Declaring a Pointer and Assigning it to a Pointer Variable

The example shown here just simply show the pointer expressions developed earlier
as being assigned to pointer variables. The variables were also explained by the pre-
vious section. Notice that the data type of the variable matches the pointer's type.

86 How to use a Pointer to Read and Write into Main Memory

Use this type of instruction when you plan to use the pointer in more than one instruc-
tion, otherwise, all you will need is the pointer expression by itself.

Code Example 17: Declaring and assigning a pointer to a pointer variable.

1 ; // 8-bit pointer assigned to 8-bit variable
2 ; // 16-bit pointer assigned to 16-bit variable
3 ; // 32-bit pointer assigned to 32-bit variable

Reading Data

Using a pointer or a pointer variable for reading data from a specific address in mem-
ory is like using a register variable to read a register. The same operators and syntax
are used. The standard bits can also be used for reading individual bitfields at an
address.

There are two matters which distinguishes the method of using a pointer as compared
to using a register variable. When using a pointer, we need to know the address num-
ber, but when using a register variable, we don't need know it. And using a pointer
provides the option of reading from more than one address, while a register variable
limits us to just the addresses within the register itself. The main reasons we need to
use a pointer is when the program must access data in memory which does not have a
dedicated register variable, such as microcontroller calibration data, and to enable the
program to create dynamic data structures.

The examples shown here are limited to just reading the entire byte at an address and
the adjacent bytes. Refer to code example 13, on page 77, for techniques which can
read individual bitfields.

Using a Pointer

When using a pointer, it means using a pointer expression. To write an instruction
which reads data from an address, we need the expression, the indirection operator,
and a storage variable where the data will be assigned to.

The pointer expression involves a operator that carries out two operations. It
specifies the

.

At line 1 of the following code example, a byte will be read from address 0x1A1A, and
it will be assigned to the storage variable a.

T. N. Krnich 87

At line 2, two bytes are read.

At line 3,

Code Example 18: Using a pointer for reading data from addresses in memory.

1 // Reading 8 bits from 0x1A1A
2 // Reading 16 bits fr 0x1A1A and 0x1A1B
3); // Reading 32 bits fr 0x1A1A to 0x1A1D

Using a Pointer Variable

Before a pointer variable can be used for reading data from an address, it must have
been declared and have a pointer assigned to it. That is shown earlier by code exam-
ple 17.

To use a pointer variable for reading data at an address in memory, we use a pointer
variable and an indirection operator to access the data, and then we assign the data to
a storage variable.

Code Example 19: Using a pointer variable for reading data from an address in memory.

1 // Reading 8 bits from 0x1A1A
2 // Reading 16 bits from 0x1A1A and 0x1A1B
3 // Reading 32 bits from 0x1A1A to 0x1A1D

Writing Data

A pointer variable is used for writing into an address in memory. Using a pointer
variable is like using a register variable for writing data into a register.

Before a pointer variable can be used for reading data from an address, it must have
been declared and have a pointer assigned to it. That is shown earlier by code exam-
ple 17.

To use a pointer variable for writing data into an address in memory, we use a pointer
variable and an indirection operator to access the data, and then we assign the data to
the variable. The amount of data which we can write, or assign, to a pointer variable
depends on how the variable's data type was declared. In the following code example,
they were declared as a char, int, and a long respectively.

88 How to use a Pointer to Read and Write into Main Memory

The examples only show how to write one, two, or four bytes to a pointer. Therefore,
when writing more than one byte, the next byte is written into the next higher address
past the pointer.

Since the pointer variable acts like a register variable, we can also use it for writing
into specific bitfields. The syntax for those operations are explained by “Overview of
the Setting, Clearing, and Toggling Operations” on page 64.

Code Example 20: Using a pointer variable for writing bytes of data into addresses in memory.
The pointer is 0x1A1A.

1 // Writing 8 bits to 0x1A1A
2 // Writing 16 bits to 0x1A1A and 0x1A1B
3 // Writing 32 bits from 0x1A1A to 0x1A1D

Using a Pointer Macro

A register variable is basically a C language macro. The macro is assigned a unique
name, and it is defined by an indirection operator working on a pointer expression.
The operator accesses the data at the pointer.

The benefit which a macro provides is a single identifier which can be used as a stor-
age variable. We can read and write into it without the complex pointer notation and
syntax.

The following code example shows how to use a pointer to create a macro which can
be used for reading and writing into a specific address in main memory.

On line 1,

.

Since the macro acts like a register variable, we can also use it for writing into spe-
cific bitfields. The syntax for those operations are explained by “Overview of the Set-
ting, Clearing, and Toggling Operations” on page 64.

Code Example 21: Creating a pointer macro that acts like a register variable.

1 // Defining the macro REG
2 // Reading a byte from address 0x1A1A
3 // Writing a byte to address 0x1A1A

Chapter 13

Watchdog Timer and Putting it on Hold

A firmware project will typically start with disabling the watchdog timer module so
we may focus on developing code without constantly having our program interrupted
by a watchdog timer overflow. Generally speaking, after the primary firmware code
has been completed, we then develop instructions that configure the watchdog. A
properly configured watchdog is important for commercially sold products which
depend on microcontrollers. Unfortunately, a thorough explanation about watchdog
strategies are beyond the scope of this book. This chapter will focus on the watch-
dog’s purpose, its basic operation, and how to place it on hold. It is typically placed
on hold until the end of program development when we can make decisions on where
are the best places in the program to reset the watchdog’s interval timer.

Purpose

The primary purpose of the watchdog is to

Basic Operation

The watchdog basically operates as an interval timer. It can be put into three different
operating modes:

.

When the microcontroller is in an off state, a successful power-up involves the
sequential execution of the BOR, POR, and PUC reset subsystems. If the module is
in watchdog mode, a flag will cause a reset. Meaning, the microcontroller will restart
at the Power-Up Clear (PUC) subsystem. A restart will hopefully clear the cause of
the CPU crash.

If the watchdog is in timer mode, and interrupts are enabled (the General Interrupt
Enable (GIE) bitfield in the CPU Status Register is set), a flag will cause the interrupt
system to direct the CPU to execute a specific ISR. An ISR is used for carrying out a
specific process (set of instructions). However, the conventional timer module, not
the watchdog timer module, is the most appropriate module used for carrying out that
type of ISR.

90 Watchdog Timer and Putting it on Hold

Regardless of which mode the watchdog is in, an interrupt flag will immediately
clear the counter back to zero.

Interval Reset Instruction

When in the watchdog mode, an interval reset instruction is used as a threshold to a
timer overflow event.

A firmware program will typically have more than one instruction for clearing the
timer interval counter. The placement and location (meaning, the program line num-
ber) of each reset instruction is a strategic decision which is based on the length of the
interval.

The interval length is configured through a bitfield in a watchdog timer register. An
instruction is used for choosing an interval length from a set of lengths. You cannot
choose a length which is different from what the given set offers.

Longer intervals will

Deciding on an interval length (the number of clock cycles) is based on the number of
instructions that will be executed during an interval. Depending on the clock fre-
quency, the interval may range from 1 to 375,000 cycles.

In the assembly language, a single instruction takes from three to six cycles to exe-
cute. But a single C language instruction is an abstraction for many assembly instruc-
tions, so it will be longer.

For information about writing an interval reset instruction, see “Watchdog Timer
Handlers” on page 178.

Watchdog Control Register Table

Since we’ll be writing into the watchdog’s control register to disable it, we need to
learn about its register variable and which bitfield masks are needed for disabling it.
Shown below, by diagram 35, is a view of the typical table for that register.

Not shown are

.

On the left side of the table are a column numbers that will not appear with a real
table. It’s used as a cross-reference between the explanations in this section and the
lines in the table.

T. N. Krnich 91

For disabling the watchdog, we are only concerned with the register variable
(WDTCTL), the password mask (WDTPW), and the watchdog timer hold (WDTHOLD) mask.
However, short explanations about the other fields are provided here for informa-
tional purposes. Keep in mind that these masks are the actual identifiers as would be
used in real firmware code.

Diagram 35: A view of the typical watchdog timer control register. The column of line numbers are not
part of the table. They are used here to help explain the table.

Line 7 shows the accessibility and initial conditions of the lower half of the register.
All the bitfields are labeled as rw-(0), which means

s

Line 8 is a description for the register’s password bitfields (WDTPW). The password is
just simply a specific 16-bit binary number and does not change. Whenever an

WDTPW Bits 15-8 Watchdog timer+ password. Always read as 069h. Must be written as 05Ah, or a PUC is generated.

WDTHOLD Bit 7 Watchdog timer+ hold. This bit stops the watchdog timer+. Setting WDTHOLD = 1 when the WDT+ is
 not in use conserves power.

0 Watchdog timer+ is not stopped
1 Watchdog timer+ is stopped

WDTNMIES Bit 6 Watchdog timer+ NMI edge select. This bit selects the interrupt edge for the NMI interrupt when
 WDTNMI = 1. Modifying this bit can trigger an NMI. Modify this bit when WDTIE = 0 to avoid triggering
 an accidental NMI.

0 NMI on rising edge
1 NMI on falling edge

WDTNMI Bits 5 Watchdog timer+ NMI select. This bit selects the function for the RST/NMI pin.
0 Reset function
1 NMI function

WDTTMSEL Bit 4 Watchdog timer+ mode select
0 Watchdog mode
1 Interval timer mode

WDTCNTCL Bit 3 Watchdog timer+ counter clear. Setting WDTCNTCL = 1 clears the count value to 0000h. WDTCNTCL is
 automatically reset.

0 No action
1 WDTCNT = 0000h

WDTSSEL Bit 2 Watchdog timer+ clock source select
0 SMCLK
1 ACLK

WDTISx Bits 1-0 Watchdog timer+ interval select. These bits select the watchdog timer+ interval to set the WDTIFG flag
 and/or generate a PUC.

00 Watchdog clock source /32768
01 Watchdog clock source /8192
10 Watchdog clock source /512
11 Watchdog clock source /64

WDTHOLD WDTNMIES WDTNMI WDTTMSEL WDTCNTCL WDTSSEL WDTISx
7 6 5 4 3 2 1 0

rw-(0) rw-(0) rw-(0) rw-(0) r0(w) rw-(0) rw-(0) rw-(0)

WDTPW
15 14 13 12 11 10 9 8

1

2
3

5
6
7

8

9

10
11

12

13
14

15
16
17

18
19
20

21

22
23

24
25
26

27

28
29
30
31

WDTCTL, Watchdog Timer+ Register

92 Watchdog Timer and Putting it on Hold

instruction writes into the register, the instruction must simultaneously include the
password mask.

Be careful about

If we ever want to read the upper register’s password at Line 3, we’ll always get
069h. But reading the lower register at Line 6 to will return the actual state of each
bitfield. And furthermore, we do not need the password to read the lower, higher, or
both registers. Code examples which follow will show how to properly use this mask.

Line 9 begins to describe the Watchog Timer Hold bitfield (WDTHOLD) used for start-
ing and stopping the watchdog. If we set the bit, the watchdog will be disabled. If
cleared, it will be enabled and run.

Line 12 describes the NMI Edge Select bitfield (WDTNMIES). As will be elaborated
upon by the next bitfield, if the RST/NMI Pin is configured to the NMI function, it
will sense logical high and low digital voltage states which are sent to the pin from
peripheral devices, such as buttons and switches. This bitfield controls whether an
interrupt service routine (ISR) is triggered by either a voltage rising from a digitally
low to a high state or from a digitally high to a low state. This is conceptually impor-
tant to take into account when designing circuits which interface with the RST/NMI
pin.

Line 15 describes the NMI Select bitfield (WDTNMI). A feature provided by the watch-
dog module is an ability to sense digital voltage signals at the RST/NMI pin that is
located on the case of the microcontroller. This bitfield configures the RST/NMI pin
to be used for restarting the microcontroller or for triggering a non-maskable inter-
rupt (NMI) service routine. If the pin is configured to the reset function, an external
peripheral device, such as a button, can be used for manually restarting the microcon-
troller. If the pin is configured to the NMI function, an external peripheral device can
be used for triggering a specific ISR.

What is NMI?

 They

T. N. Krnich 93

come from the RST/NMI pin, from the clock module, and from the memory module.
Maskable interrupts, which are of many types, are general purpose in nature. They all
can be blocked by disabling interruptions (setting the General Interrupt Enable (GIE)
bitfield in the CPU’s status register). Be aware that to temporarily disable interrupts
is an important action to occur while configuring the registers for some peripheral
modules and systems.

Line 18 describes the Watchdog Timer Mode Select mask (WDTMSEL). This field con-
trols the result of a timer interval overflow. If the field is cleared, an overflow will
trigger a restart. If the field is set, an overflow will set a flag that triggers an ISR.

Line 21 describes the Timer Counter Clear bitfield (WDTCNTCL). This bitfield is used
for clearing the timer counter to zero. When using the watchdog for monitoring CPU
crashes, this is the field that our firmware will use

.

Line 24 describes the Timer Clock Source Select bitfield (WDTSSEL). Use this bitfield
for

Line 27 describes the Timer Interval Select bitfield (WDTISx). The actual masks as
defined by the header file are WDTIS0 and WDTID1 which are symbolic constants for
0x01 and 0x02 respectively. Use these bitfields for

The format used for showing us the number of cycles can be confusing. Here is how
you interpret

.

The rationale for using that format is so we can quickly calculate the length of time
for the interval. For example, if the watchdog is driven at 16 MHz, then the calcula-
tion is , and if it is driven at 1 MHz, then the
calculation is .

About three to six cycles are need by the CPU for executing a single line of instruc-
tion in the form of assembly code, but more cycles are typically consumed for exe-
cuting an instruction in the form of C language code. This is because a single line of
assembly is typically built of a single operator and two operands, while a single line
of C can have many more operators and operands. However, the difference in the
amount of object code produced by both languages is typically none or very little.

16MHz() 32768cycles()⁄[] 488.3ms=
1MHz() 32768cycles()⁄[] 30.5ms=

94 Watchdog Timer and Putting it on Hold

Code Composer Studio has a tool for counting the number of clock cycles consumed
for every instruction. It’s called the Profile Clock. When Code Composer is in debug
mode, we can open the tool from the Run Menu. From there, we point to Clock and
then select Enable and Show. The Profile Clock will appear in the lower right-hand
corner of the Main Window.

Stopping the Watchdog Timer

Stopping the watchdog is also referred to as putting it on hold or disabling it. But per-
manently disabling the watchdog is a bad practice, so we temporarily disable it in
order to focus on developing a program without constantly having our program inter-
rupted by a watchdog overflow.

The control register for the watchdog is a password protected register. Manipulating
bits in a password protected register is not done in the same way as a conventional
register. The password mask and the fields which we want to set are added together
with the additive operator (+) to create a 16-bit wide binary number, and then the
number is assigned to the 16-bit register variable. In other words, we sum up all the
fields which must be set, and then write them into the register. Masks which are
included in the summation will have their respective bitfields set, while masks which
are not included will have their respective fields cleared. And finally, the password is
always included; otherwise, a reset at PUC will be caused.

Diagram 36 shows the register for the following codes examples. It is a portion of the
entire table shown by diagram 35, on page 91. The password (WDTPW) in binary nota-
tion is 0101101000000000, which is 0x5A00 in hexadecimal notation. The hold bit-
field mask (WDTHOLD) is the symbolic constant for 10000000 (0x80). The mask and
password are defined by the microcontroller’s header file, and the password value is
typical for all MSP430 watchdog registers.

Code Example 22: Placing the watchdog timer on hold.
; // Placing the watchdog timer on hold.

Now be aware that when this register is read,

.

Diagram 36: Watchdog register for code example 22.

WDTHOLD WDTNMIES WDTNMI WDTTMSEL WDTCNTCL WDTSSEL WDTISx
7 6 5 4 3 2 1 0

rw-(0) rw-(0) rw-(0) rw-(0) r0(w) rw-(0) rw-(0) rw-(0)

WDTPW
15 14 13 12 11 10 9 8

WDTCTL, Watchdog Timer+ Register

(Read as 069h. Must be written as 05Ah)

T. N. Krnich 95

Writing an Active Watchdog Timer Handler

For information about how to write an instruction that uses an interval reset instruc-
tion, see “Watchdog Timer Handlers” on page 178.

Stopping the Watchdog Timer during the Boot Process

One important characteristic of the MSP430 boot program is its responsibility for ini-
tializing global variables. However, too many variables can adversely affect the exe-
cution of an instruction which configures the watchdog register.

In a scenario where your firmware involves instructions which initialize many global
variables, and the instruction for holding the watchdog timer is located inside of the
main() function, the watchdog timer may

Using Boot Hook Functions to Stop the Watchdog and Execute other Instruc-
tions

After the reset system has managed the powering up of the microcontroller and ini-
tializing the registers, it loads the CPU program counter register with the address to
the first instruction of the boot program. The program has its own set of instructions
which initialize the firmware execution environment (the firmware image). A boot
hook is a function which is intrinsic (built into) to the MSP430 compiler. It gives us
direct access to two points in the boot program which are near the beginning and near
the end of the program.

The point where a boot hook function gives us access near the beginning of the pro-
gram is called system pre-initialization, and the function’s name is

. Use this function for containing instructions which are specif-
ically needed for initializing a register before the main() function is called. It will be
executed after

.

The point where a boot hook function gives us access near the end of the program is
called system post-initialization, and this function’s name is
It will be executed during firmware initialization, but before any global variables are
initialized. After the post-initialization function has been executed, the next instruc-
tion in the boot program will call our main() function.

For more information, see the of the MSP430 Optimiz-
ing C/C++ Compiler User’s Guide (SLAU132).

96 Watchdog Timer and Putting it on Hold

Using the _system_pre_init() function

Use this function for inserting firmware instructions near the beginning of the boot
program.

This function is declared as returning an integer, and it is void of any parameters.
Within its code block, there are two instructions. The first one puts the watchdog on
hold. The second one returns an integer to the instruction in the boot program that
calls this function. If the integer is 1, these instructions will be executed. If the integer
is 0, these instructions will not be executed.

This function can only be used outside of the .

Code Example 23: Using the system pre-initialization function.

1
2 {
3 ; //Put the watchdog timer on hold.
4 //Return 1 to execute, or 0 to not execute.
5 }

Using the _system_post_cinit() function

Use this function for inserting firmware instructions near the end of the boot pro-
gram. It is declared as being void of a value and void of any It con-
tains an instruction, for example, that puts the watchdog timer on hold.

This function can only be used outside of the .

Code Example 24: Using the system post-initialization function. It must appear

1
2 {
3 ; //Put the watchdog timer on hold.
4 }

Reading the Watchdog Timer Register

To read a watchdog register means to assign its contents to a storage variable. It is
based on the technique used for reading a conventional register (not having a pass-
word), but it is slightly modified to take into account for a password. By using a pass-
word and masks, we can read specific register bitfields, or we can avoid using masks
so the entire register can be read. Once the data is in the variable, it’s available for use
as needed.

. Therefore, our storage variable only needs to

T. N. Krnich 97

be eight bits wide to hold the contents from the lower register. For the storage vari-
able, we declare it as storing unsigned char type of data.

Code Example 25: Reading the bitfields in a watchdog register.

1 //Declare our storage variable.
2 //Read the entire lower register.
3 //Read the WDTHOLD field.
4 Read WDTHOLD and WDTNMIES.

When our instruction reads the watchdog register, the upper eight bits will always
return as And since we are only interested in the lower we use binary
subtraction to remove those upper register bits. Binary subtraction is an operation
similar to decimal subtraction, meaning, each place in the operands are operated upon
individually. Therefore, we must convert from an eight bit number to a sixteen
bit number by appending two zeros (That new number will be able to sub-
tract from the upper eight bits, and leave us a result in the form of the lower
eight bits of the watchdog register.

The first instruction reads the

The second instruction, which is based on the syntax of the first instruction, just reads
a

.

The third instruction reads

98 Watchdog Timer and Putting it on Hold

Chapter 14

main() Function

The main() function can easily be under appreciated, so that perception can make us
overlook some important details about it. From the perspective of an MSP430, let’s
briefly look at its purpose, its two syntaxes, how it’s called, whether data is passed to
it, and about the data it returns.

Purpose

The purpose of the main() function is to contain instructions which form the core
program component of our firmware. Program components such as preprocessor
directives, function definitions and their prototypes, interrupt service routines, and
global variables are located outside of the main() function. Those external compo-
nents are what enable us to develop modular programs.

How the main() Function is Called

Other than not requiring a function prototype to be declared, the main() function is
no different from any other C programming language function, so it can be called by
another instruction which is located outside of main(). And that is what actually hap-
pens. During startup, and at the end of the

.

Code Example 26: Here is the exact instruction, along with its comment, in the
 to be executed.

 // Call main() function.

Syntax and Format for a C Language Function

The format for the main() function follows the conventional rules for any other func-
tion. The standard format of a function definition is shown below. From that format,
two syntaxes can be derived.

Code Example 27: Format for a C language function.

1
2 {
3
4
5 }

The can be any valid identifier. The is the type of
data which this function will return back to the instruction that calls this function.

100 main() Function

The identifies each variable and their type where data can be put or fed
into the function. Within the function’s code block are lines of instructions in the
form of definitions and statements.

The Two Standard Syntaxes for the main() Function

The international standard for the C language provides two main() function syntaxes
from which to choose. What distinguishes one from the other is the parameter list.
The first syntax is void of parameters, and the second syntax has parameters.
Although the second one can be used, the first one is typically, if not exclusively,
used in writing a main() function that will be executed by an MSP430.

First Syntax and Format

This first form is used for writing the main() function for an MSP430.

Code Example 28: The syntax for writing a main() function.

1
2
3
4
5

The function is declared as producing a in the form of an integer
(int) and as being of any This means that main() is expected to

),
and that no data can be put into the main() function. The function’s block of code or
instructions are enclosed by curly brackets.

main() is Void of Parameters

Notice that the instruction which calls main(), as shown by Code Example 26, will
attempt to pass the integer zero to main(), but main() is declared as being void of
any parameters. Why do these two instructions contradict each other?

The return Statement

The last instruction in the block is a statement. It passes data back to the
instruction which calls main(). In this case, the data type is integer, having the value
of zero, and all in accordance with the main() function’s declaration.

As will be described by a later chapter, main() should be developed so that it will not
be executed. Meaning, the instruction, at the end of main(),

T. N. Krnich 101

should never be That method of development is called event-driven, and it is
introduced on page 120.

So why bother to include a instruction? Although the main() function will be
designed to never allow the flow of execution to return back to the instruction that
called main(), the instruction is not necessary because

If for some unintended reason the flow of execution does go back to the boot pro-
gram, the next instruction in the boot is exit(1). That puts the microcontroller into
some low powered operating mode.

Second Syntax and Format

This second syntax form is unconventional and is not used in developing a program
for commercial production. Here is its syntax.

Code Example 29: The second syntax and form which is not used for developing a main()
function.

1 int main(int argc, char *argv[])
2 {
3 /* */
4 return 0;
5 }

This syntax allows us to pass data to main() so the data can be used in some way.
That syntax is most probably used for running test cases during development. Many
of us who have used the C language for writing programs that run on a personal com-
puter will recognize this format, since we used it for passing data from the operating
system command line to the program. The Code Composer Studio scripting console
can be used for passing command line data to main().

For more information, see the section named “Passing Arguments to main(),” in the
MSP430 Optimizing C/C++ Compiler User’s Guide (SLAU132).

102 main() Function

Chapter 15

Program Development Nomenclature

Routines

In the field of programming, a routine is understood as a set of program instructions
which describe how to perform a task. The context here is an MSP430. Therefore,
most tasks are triggered by a CPU interruption flag. One such task is in the form of
interrupt service routine (ISR). The routine reads registers to get information, then
uses the information to make a decision, and then uses the result of the decision to put
data into a register, or to manage a set of stored program data, or both.

Subroutines

A routine may be divided into subroutines, where each subroutine is a subset of
instructions used for performing a subtask. Therefore, since we are viewing an ISR as
a routine, the ISR then can viewed as a set of subroutines.

Block of Instructions

A routine or a subroutine may also be referred to as a block of instructions or code.
Blocks are just abstractions we use for referring to and distinguishing between sets of
instructions. A block is often delimited by brackets or parenthesis.

Logic Circuits as Routines and Subroutines

But also keep in mind of another perspective of routines. They are not limited to pro-
gram instructions. They may also refer to microcontroller logic and control circuits
which carry out tasks. For example, the entire reset system of circuits can be viewed
as a routine, and its three reset subsystems (BOR, POR, and PUC) can be viewed as
subroutines.

Service

Service is also another concept that has special meaning within the context of a
microcontroller, and it’s from the CPU’s point of view.

A routine, subroutine, or single instruction tells the CPU what to do. In other words,
when the memory address to an instruction is loaded into the CPU’s program counter
register, the CPU executes that instruction. The instruction will typically be for exe-
cuting an ISR. And an ISR will typically be used for getting data from a module,
using the data to make a decision, and then putting the resulting data of the decision
back into a module. We may call that work performed by the CPU as servicing an
ISR or servicing a module.

104 Program Development Nomenclature

Chapter 16

Structures for Program Development

A flow of execution is defined as a sequence of program instructions. And for a pro-
gram to carry out the result of a decision, the flow must be able to branch away from
the decision so an appropriate sequence of instructions will be executed. The C pro-
gramming language offers three categories of structures which control program flow.
They are called the sequence structure, the selection structures, and the repetition
structures. The sequence structure is used for creating a linear, non-branching, flow
of execution. Decisions are not made in such a structure. The selection and repetition
structures are used for making decisions. The result of the decision may transfer con-
trol of execution to an alternate flow.

Diagram 37: The fundamental flow control structures which we use for developing a program.

Sequence Structure

The sequence structure is a natural form that is built into all programming languages.
It can be visualized as a sequence of where the program exe-
cution flows from one line of to the next and from one to the next.
Such a sequence can be presented graphically with shapes which represent an instruc-
tion or routine. Arrows point from one shape to another. The shapes are typically in
the form of rectangles, diamonds, and ovals which contain a caption that describes

Sequence
Structure

T

F

if structure
(single selection)

TF

if...else structure
(double selection)

T

F
T

F
T

F

switch structure
(multiple selection)

Selection Structures

T

F

while structure

T

F

do...while structure

T

F

for structure

Repetition Structures

106 Structures for Program Development

the instruction or routine. The arrows are called flow lines, and they represent the
flow of program execution. Sometimes the arrows may not appear because the shapes
are butted against each other in a way that represents the flow.

Selection Structures

This is the first type of structure which can be used for making a program decision.
The selection structure is used for specifying that the next instruction to be executed
may be other than the next one in the sequence. That is called transfer of execution
flow control.

The C programming language provides three types of selection structures which are
referred to as selection statements. All use a Boolean expression as a condition for
making a decision.

The if() selection statement will
. The if…else selection state-

ment will
 The

switch() selection statement begins with making a decision, and then uses the result
of the decision for transferring the flow to one of many different cases. Each case
contains a subroutine of instructions for handling the case.

The if() statement is known as a single selection statement because it selects or
ignores a single instruction. The if…else statement is known as a double selection
statement because it selects between two instructions. And the switch() statement is
known as a multiple selection statement because it selects one instruction among
many different instructions.

Repetition Structures

This is the second type of structure which can be used for making a program deci-
sion. The repetition structure is used for

.

Chapter 17

Basic Approach for Developing a Microcontroller Solution

When approaching a firmware and hardware development project for the MSP430,
having a plan will help us organize our work so we can divide the project into man-
ageable tasks and subtasks which together accomplish an objective.

An initial plan provides a framework that can be elaborated upon as the project
progresses. Described here is such a plan. Modify it as needed. But what are not
shown by this plan are tasks which carry out quality assurance, reliability, testing,
and release to market or for going into service.

Be aware that these tasks do not have to be done in the order which they are shown.
Furthermore, they can be grouped into subsets of common tasks.

Task 1: Conceptualize the Problem and its Solution

To conceptualize a solution,
.

Task 2: Design the Power Supply Interface Circuit

.

Task 3: Design the Signal Input Interface Circuit

If the solution involves an

Task 4: Develop Instructions which Configure the Signal Input Path

If the solution involves an input signal, instructions which configure the input signal
path from the microcontroller’s terminal to the appropriate module are to be devel-
oped. Meaning, when signals enter the microcontroller, their path will typically need

108 Basic Approach for Developing a Microcontroller Solution

to be directed toward the proper module. The instructions will typically configure an
input signal multiplexer, since most terminals on the case are multiplexed with more
than one module. That is a job which is typically handled by the I/O Module. Some
additional instructions may also be needed for conditioning the signals while they are
on their way to the module.

Task 5: Develop Instructions which Configure the Input Module

If the solution involves

Task 6: Develop Instructions which Make Decisions

After the input signals have been determined, develop instructions which

.

Task 7: Develop Instructions which Act on the Result of a Decision

After the decision has been made,

Task 8: Develop Instructions which Configure the Output Module

Develop instructions which configure the module that will handle the output signal.

Task 9: Develop Instructions which Configure the Signal Output Path

The output signal flows on a path from the signal output module to a pin on the case.
Therefore, instructions which configure the output signal path from the module to the
appropriate terminal on the microcontroller’s case must be developed.

Task 10: Design the Signal Output Interface Circuit

The output signal must flow

Chapter 18

MSP430 Reference Model

A use case is the act of putting something to work within a particular situation. The
field of engineering utilizes them to visually show the configuration of a product
while in use, since it provides a starting point where engineering development may
proceed.

An MSP430 is typically used for monitoring and controlling devices. An abstract ref-
erence model of the MSP430 is presented here that can be utilized to visually show
its configuration while in use. It is generic, so it can apply to the monitoring case, the
controlling case, or both. It provides a starting point where engineering development
may proceed. And it can be elaborated upon during the course of a development
project to provide less abstraction and more details.

A well designed reference model can serve as an engineering specification that
guides the program development process, a topic covered by the next chapter. If not
used for creating a specification, the model will at least provide a visual guide that
will help us get oriented with our development efforts.

Structural Overview

As shown by diagram 38, the MSP430 can be visualized as three stacks of elements
which stand on a single program element.

The stack on the left handles input signals, while the one on the right handles output
signals. Situated at the base is the core element, the program. It contains all the
instructions which the CPU will carry out. Elements which are shaded contain regis-
ters which the CPU can read and write into. The middle stack represents electrical
power that supplies energy to the microcontroller.

There are scenarios where data or signals may go both ways within a stack of ele-
ments. For example

The focal points in this model are the

The physical boundary between the microcontroller and its environment is repre-
sented by two elements: the input terminals and the output terminals. Elements which

110 MSP430 Reference Model

are above the terminals are located outside of the microcontroller and are part of its
environment.

Two layers of elements are able to

As for the CPU, it steps through our program to execute the instructions. Some
instructions tell the CPU to read data from a register and use it to make a decision.
Other instructions use the result of the decision to write data into registers, into vola-
tile storage variables, or into both. Furthermore, parts of the program are in the form
of interrupt service routines. So depending on which flag was set by the event, the
interrupt system tells the CPU to execute the routine linked to that specific flag.

Diagram 38: The reference model.

Input Signal Stack

An event is something that happens, takes place, or occurs. The MSP430 is designed
to monitor and react to events. They may occur from outside or inside of the micro-
controller. Although an event can be characterized as any physical phenomena, the
result of the event ultimately becomes a voltage signal which enters a terminal pin on
the microcontroller’s case.

In a properly configured microcontroller, an event will

.
When the CPU is finished with the ISR, it resumes with what it was doing before it

IFG

IFG

Program

Sensed External Event

Internal Event

Produced External Event

Internal Event

Input
Signal

Output
Signal

T. N. Krnich 111

was interrupted, which is typically some operating mode of sleep. The ISR is
designed to handle the event and produce an appropriate output signal.

Externally Occurring Events

An external event occurs at the outside of the microcontroller. An input peripheral
device is used for sensing or producing such events. If sensed, it is a passive device
such as a sensor. If produced, it is an active device such as a switch.

Passive devices will convert a sensed event into an electrical signal. While on the
other hand, active devices do not sense events, they produce them, and they are in the
form of electrical signals. Regardless of the type of device, we call the signal it pro-
duces a microcontroller input signal. The signal is then supplied to the next lower ele-
ment in the stack, a conditioning circuit.

The input signal will typically need to be

When the signal appears on a terminal, it typically flows into an I/O module where it
is switched to a specific destination by a signal multiplexer. Most, if not all terminals
on the MSP430 are Meaning, a single terminal has access to

During power-up, the program had configured the input peripheral module to monitor
for input signals. So when it senses a signal, the raw signal is placed into a storage
buffer or converted into a binary number and placed into a register, and then the mod-
ule sets an interrupt flag. The flag is in the form of a register bitfield, which is contin-
uously being monitored by the CPU interrupt system, at the next lower layer.

When the interrupt system notices a set flag, it

The purpose of the ISR is to provide instructions to the CPU about how to handle and
react to the event. The instructions will typically specify five tasks. 1) Read any rele-
vant data provided by the input peripheral module that characterizes the signal.
2) Read any relevant data stored in main memory. 3) Use all the data to make a deci-
sion. 4) The result of the decision is then used for updating any relevant (volatile)
data stored in main memory and writing data into the output peripheral module regis-
ters. Data changing in a module's registers will automatically drive it to carry out the
work which it was designed and configured to do. That work produces a signal which

112 MSP430 Reference Model

then drives the output peripheral device. And 5) the final instruction clears the inter-
rupt flag.

Internally Occurring Events

An internal event occurs at the inside of the microcontroller. They are produced and
sensed by . For example, if it is an analog to
digital (ADC) peripheral module, it could be monitoring a built-in temperature sen-
sor. If it is a real time clock module, it could be producing and monitoring for timer
counter overflows. The types of internal events which an MSP430 can sense and pro-
duce will vary from one model to another.

An internally occurring event is handled like . Meaning,

 When
the CPU has finished with the ISR, it resumes with what it was doing before it was
interrupted., which typically is a low powered operating mode we call sleep.

Output Signal Stack

The source of an output signal is typically, if not always, from an interrupt service
routine. If it isn't from an ISR, the program was probably developed to execute a pro-
gramming example or test, since the proper way to produce output signals are with an
ISR. Therefore, the scenario here involves an ISR being the source of an output sig-
nal.

An ISR is part of the program. Its purpose is to provide instructions to the CPU about
how to handle and react to an event. After it has made a

. The
module then produces a signal which drives or sends a message to an output periph-
eral device. Therefore, an output signal can be defined as either updating volatile
data, driving a peripheral device, sending a message to a peripheral device, or all
three. The signal begins as binary data, and it ends as some specific form of voltage
signal.

If the output signal is used for updating a set of volatile data, the scenario may
involve saving the stored data until a time when it must be sent to a peripheral device.

, and then it writes the data
into a volatile storage array.

If the output signal is used for driving a peripheral device, the scenario may involve
configuring the registers of a peripheral module to produce a special type of output

T. N. Krnich 113

signal that drives a peripheral device. For example, the ISR writes into timer module
registers so the module will produce a pulse-width modulated signal that drives a
brushless electric motor.

And if the output signal is used for sending a message to a peripheral device, the sce-
nario may involve configuring the registers of a peripheral module to produce a sig-
nal in accordance with a standard protocol so a peripheral device can read it. For
example, the ISR writes some words into the registers of an enhanced universal serial
communication interface (eUSCI) module which is operating in the inter-integrated
circuit (I2C) mode. Once the module senses a change in its message input registers, it
automatically sends the message out a port channel or some other dedicated pin.

The three elements in between the output peripheral module and output peripheral
device act in the same way as those same elements in the input signal stack, but in
reverse. A multiplexer (in an I/O module) switches the circuit from a peripheral mod-
ule to an output terminal. And a conditioning circuit is used for converting the output
signal into one which can be accepted by the peripheral device. It adjusts the voltage,
current, and noise to acceptable levels, and then supplies the signal to the next higher
element, the peripheral itself.

Power Supply Stack

This stack represents electrical energy flowing into the microcontroller. The energy is
used for giving power to the microcontroller.

At the top of this stack is the

The supply layer is an abstraction of the on
 on the microcontroller, and the electrical circuit that interconnects the two sets

of terminals. The circuit is designed to condition the electricity so it can be within the
specified range of voltage and current.

Below the interface is the system modules layer. The MSP430 has at least two system
modules which handle the power supplied. They are known as the

114 MSP430 Reference Model

Chapter 19

Patterns for Program Development

A pattern is something shaped or designed to serve as a model from which a thing is
to be made. In this context, the pattern serves as a model from which a program is to
be made.

While the reference model, as presented by the last chapter, provides a broad abstract
view of the microcontroller's entire operation, these patterns are narrower in view.
They provide abstract views of just the program's operation. Therefore, they are a
starting point from where the actual program development process may begin. They
show the basic set of instructions, routines, and their relationships which are needed
for developing a program for the MSP430.

Two program patterns are presented here. The first one is called the repetitive pattern,
and it is appropriate for developing programming examples and tests. The second one
is called the event-driven pattern, and it is used for developing commercial grade pro-
grams.

Be aware of what is not provided by these patterns. They are not complete pictures of
a program. A program written in the C programming language, especially its main()
function, will depend on instructions and routines which support it. For example,
they are instructions which include specific C language and MSP430 libraries,
instructions which define preprocessor directives, global variables, global functions
and their prototypes, and boot initialization functions. Therefore, those supporting
instructions are not shown by the patterns. That is a topic that will be covered and
elaborated upon by the next chapter, and completely covered by the last chapters.

Repetitive-Driven Pattern of Program Development

This pattern should be limited to projects which present a programming example or
possibly for firmware testing scenarios. Unless a rationale argument can be made for
using it, this pattern should not be considered for producing commercial grade prod-
ucts.

As shown by diagram 39, two forms of the repetitive pattern are presented here: the
sequential and selection.

Both patterns are written entirely inside of the main() function. They begin with a
sequence of instructions which configure and setup the microcontroller for operation.
Following that sequence is a single repetitive loop of instructions. That loop is the
core characteristic of the repetitive pattern, and the instructions inside of it are what
distinguishes the pattern as being sequential or selection. The sequential pattern does
not depend on an input signal to produce an output signal, while the selection routine
depends on an input signal to produce an output signal.

116 Patterns for Program Development

Diagram 39: The repetitive-driven patterns of program development.

Configure and Setup Sequence

Before doing any actual work, a sequence of instructions which configure and setup
the microcontroller for operation must be executed.

Watchdog Timer Handler

This sequence of configuration routines begins with a watchdog timer handler. The
typical usage scenario, such as a programming example or test case, will have the
watchdog disabled. Once it is disabled, an oscillator settling handler is executed.

 Handler

An oscillator is used for producing a timing signal which drives the clock module,

.

Repetitive Sequential Repetitive Selection

[true
[false

Re
pe

tit
io

n

From the flow of program execution
enters main() and remains inside of it.

Event

Decision

Decision

Input Signal

Output Signal

System Setup

Se
le

ct
io

n

[always]
[never]

From the flow of program execution
enters main() and remains inside of it.

Re
pe

tit
io

n

Se
qu

en
tia

l

Output Signal

System Setup

T. N. Krnich 117

So to mitigate that scenario, we use an oscillator settling handler. It puts the flow of
execution into a small loop where the condition of the flag is read, and if the flag is
set, it is then cleared, and the flow of execution goes back to the beginning of the
loop. If the flag is read as being cleared, then the flow exits the loop and continues
with the next system setup instruction.

Signal I/O Multiplexing

The signal multiplexers (in the IO/ modules) are now to be configured. Since the
sequential pattern only produces output signals, a multiplexer is configured to create
an outbound circuit from an output peripheral module to a terminal on the microcon-
troller's case. The servicing routine, located inside the sequential routine, is the
source of the output signal.

While on the other hand, the selection pattern uses an input signal to produce an out-
put signal. Therefore, two multiplexers are configured. One creates an inbound cir-
cuit from a terminal to an input peripheral module, while the other creates an
outbound circuit from an output peripheral module to a terminal.

Configure the Modules

Unlock

Reset Fault Handler

A reset fault is an event produced by a system module or a signal at an input terminal
which is configured to restart the microcontroller (called reset mode).

118 Patterns for Program Development

If the reset fault is produced by a module, the event is in the form of a voltage brown-
out, security violation, watchdog timer overflow, or some other system fault. If pro-
duced by a terminal in reset mode, the event is in the form of a signal produced by,
for example, a switch. Such a switch is used on computers to restart them from an
unstable operation or a crash.

These are all non-maskable CPU interruptions (NMI) which set their own particular
interrupt flag. Therefore, the intent of this reset fault handler is to determine which
flag was set, and use that information in some way. Possibly, to produce an output
signal that illuminates an LED. The handler would then clear the flag.

The Repetitive Sequential Routine

The repetitive sequential routine does not depend on an input signal to produce an
output signal. Use it for producing a repetitive output signal which does not depend
on making a decision.

Diagram 40: The repetitive-driven pattern of development
using a sequential routine.

This routine is built of two program execution
flow control structures. One is a repetition struc-
ture, and the other is a sequence structure.

The repetition structure is in the form of a

.

Inside of the loop is a sequence of instructions. The first instruction is a

 This represents a microcontroller output
signal.

The second instruction is a . It occupies the CPU for a specific number
of clock cycles, so it will not execute the next instruction. Otherwise, the servicing
routine would be executed again without any delay in time.

[true
[false

Decision

From the flow of program execution
enters main() and remains inside of it.

Re
pe

tit
io

n

Se
qu

en
tia

l

Output Signal

System Setup

T. N. Krnich 119

Once the delay handler is executed, the flow of execution returns to the decision at
the beginning of the repetition structure.

A programming scenario that will use this repetitive sequential routine, for instance,
is the blinky programming example. It is typically loaded into the microcontroller at
the factory. The servicing routine is a short sequence of instructions which configure
the digital I/O module to produce a repetitive cycle of signals at a pin that flashes an
LED.

The Repetitive Selection Routine

The repetitive selection routine will depend on an input signal to produce an output
signal. Use it for producing a repetitive signal which depends on making a decision.

Diagram 41: The repetitive-driven pattern of
program development using the selection rou-
tine. The selection routine depends on

.

This structure is similar to the
 It is also an infinite loop,

in the form of a statement,
that contains a selection routine
instead of a sequential routine. The
selection routine is also referred to as
a routine. Let's begin with the
first instruction inside of this loop.

The first instruction in the loop is a

.

The next instruction is a

The decision is typically in the form of an if() selection statement. The decisions are
made on conditions built of relational or equality operators. If the condition evaluates
to zero or false, the routine is skipped. If the condition evaluates to a non-
zero number or true, the routine is executed. In this case, the condition is
built of an operand in the form of the storage variable, an operator, and another oper-
and which the variable is compared with.

The last instruction in the routine is a It occupies the

.

[true
[false

true

false

Re
pe

tit
io

n

From the flow of program execution
enters main() and remains inside of it.

Event

Decision

Input Signal

Output Signal

System Setup

Se
le

ct
io

n

120 Patterns for Program Development

Once the delay handler is executed, the flow of execution returns to the decision at
the beginning of the repetition structure.

A programming scenario that will use this repetitive selection routine, for example, is
an electronic thermometer. The input device is peripheral in the form of a built-in
temperature sensor with an input to an analog-to-digital converter (ADC) module.
The sensor monitors the temperature of the microcontroller's case, sends the reading
as analog voltage signal to the ADC where its converted to a binary number, and then
the ADC writes the number into a register. That data represents the microcontroller
input signal. To get the data, a polling handler reads the register and then writes it into
a storage variable. A decision is then made about

The display then graphically presents the new temperature. A delay handler
then occupies the CPU for a minute before the flow of execution returns to the deci-
sion at the beginning of the repetition routine.

Event-Driven Pattern of Program Development
Diagram 42: The event-driven pattern of pro-
gram development. Use this pattern for develop-
ing commercially sold products.

Use this pattern for developing com-
mercially sold products. It is con-
structed of three basic sequences of
routines: a sequence that configures
and sets up the microcontroller, an
input signal sequence, and a decision
and output signal sequence. Input sig-
nals are referred to as events.

The flow of execution begins with the
sequence of routines which configure
and setup the microcontroller for work.
It's like the corresponding sequence of
routines in the repetitive-driven pattern,
but elaborated upon.

.

er

Co
nfi

gu
re

 an
d

Se
tu

p
Se

qu
en

ce
In

pu
t S

eq
ue

nc
e

De
cis

io
n

an
d

Ou
tp

ut
 Se

qu
en

ce

Flow of program execution enters the main()
function here and remains inside of it until an
event triggers an interrupt service routine.

main()

ISR

Event Input
Module

Interrupt System

System
Setup

Input
Signal

Output
Signal

Output
Module

Although not shown, the
watchdog handler is
appropriately distributed
throughout the program.

T. N. Krnich 121

The first of those three routine enables the microcontroller to

Once it is asleep, the microcontroller is ready to handle events. An event produces an
input signal. The flow of execution resumes when an input signal triggers the

Once the signal input sequence has been executed, the decision and signal output
sequence is now executed. Meaning,

System Configuration and Setup Sequence

This sequence of routines is entirely contained by . The purpose
of this sequence is to prepare the microcontroller for work and finish with putting it
into a low powered operating mode of sleep.

Watchdog Timer Handler

During program development, the watchdog timer is typically disabled so it will not
interfere with the development process. But near the end of the process, a proper
watchdog timer handler must be developed. A watchdog is an essential part of a pro-
gram which is destined for commercial use. Its purpose is to handle CPU crashes.

The final program will typically

n

.

One obvious place to put a handler is at the end of the configuration sequence, but
right before the instruction that puts the microcontroller to sleep. That would ensure a
cleared timer counter before an ISR is executed.

Be aware that if a program has many global storage variables to declare, the counter
may overflow before that process is completed. Such a delay may result in triggering
a microcontroller restart before the flow of execution can reach main(). In that case,
a timer handler would have to be placed in the boot program. Placing the handler
inside of the boot is done with an MSP430 intrinsic function. For more information,

122 Patterns for Program Development

see “Stopping the Watchdog Timer during the Boot Process,” on page 95. By the
way, using global variables in event-driven firmware is a risky practice.

About the Next six Routines

The following routines, from the oscillator settling handler to the reset fault handler,
with exception to multiplexing and channel interrupt flag handling, are just like those
routines in the repetitive-driven pattern of development. Therefore, those sections are
repeated here.

 Handler

Signal I/O Multiplexing

Signal multiplexers are now to be configured. Two circuit paths are configured with
them. One forms an inbound circuit from a terminal on the case to an input peripheral
module, while the other forms an outbound circuit from an output peripheral module
to a terminal.

Configure the System and Peripheral Modules

Routines are now used for configuring the modules. The system modules, such as the
clock, are configured first, since peripheral modules will probably depend on them in
some way. The peripheral modules are then configured.

Not all modules are configured. Just those which
.

Although the I/O port channels can be configured now, their interrupt flags (IFGs)
cannot be cleared to zero before the port channels are unlocked. Therefore, that rou-
tine is placed after unlocking the channels.

T. N. Krnich 123

Unlock the Digital I/O Port Channels

Port Channel Interrupt Flag Handler

System Reset Fault Handler

A system reset fault is an event produced by a system module, or it is a signal at an
input port channel which is configured to tell the microcontroller to reset itself.

If the fault is produced by a module,

A reset fault causes a System Reset Interruption. Each type of interruption will set
their own particular interrupt flag.

The intent of this reset fault handler is to determine which reset interrupt flag was set,
and use that information in some way. Possibly, to produce an output signal that illu-
minates an LED. The handler would then clear the flag.

124 Patterns for Program Development

To repeat an important concept, keep in mind that every channel’s interrupt flag can
only be cleared after all channels have been unlocked.

Enable Maskable Interruptions

A non-maskable CPU interruption (NMI) is caused by an unplanned event which
makes the microcontroller unstable or inoperable. Such events are categorized as
System NMIs (SNMI) and User NMIs (UNMI). A system NMI is caused by a system
reset fault. A user NMI is caused by an oscillator fault or a signal sensed at the RST/
NMI pin. To include a user reset which is triggered by the RST/NMI pin, the port
channel which is connected to the pin is configured into NMI mode; meaning, it will
cause an interrupt service routine to be executed, instead of resetting the microcon-
troller. An NMI cannot be stopped or blocked from interrupting the CPU.

A maskable CPU interruption is caused by a planned event which occurs at a periph-
eral module. It is the type of event which the program is designed around and meant
to handle. In other words, these types of interruptions, quite literately, represent the
input signals which the microcontroller is intended to handle. Such events are sensed
and produced by peripheral modules and some system modules. Interruptions caused
by these events must be enabled, otherwise they are blocked from interrupting the
CPU.

So when a module senses an event, it sets a bit in a particular register which belongs
to the module. The bitfield is called an interrupt flag (IFG), and these flags are moni-
tored by the interrupt system. If it is a maskable IFG, it can be blocked from the inter-
rupt system's view. To allow these maskable flags to be seen, or unmasked, a bitfield
in the CPU Status Register is set. It's called the General Interrupt Enable (GIE) bit-
field. We typically use an MSP430 instrinsic function to set that bit.

When the microcontroller powers-up or resets, the GIE bitfield is in a cleared state.
Therefore, maskable interrupt flags cannot be sensed by the interrupt system.

At this point in the system configuration and setup sequence, after the reset fault han-
dler, is where we place an instruction that sets the GIE bit. Otherwise, the microcon-
troller will not become event-driven. It will not execute an ISR to handle an event.

Also assure that the

Volatile Data Handler

T. N. Krnich 125

sections. Therefore, that data is called volatile. Those modes are referred to as frac-
tional low powered operating modes (LPMx.5); for example, LPM3.5. In order to
mitigate the loss of data during a fractional low powered operating mode, we cur-
rently have two options: a special function that places such data into non-volatile
memory or a backup memory register. The function is called PERSISTENT(), and
the registers are typically called BACKMEM. The function is always available with
microcontrollers built of FRAM, but not the registers.

If your microcontroller will be entering a low powered operating mode that will lose
volatile data, this is the point in the configuration sequence when that data must be
saved.

A volatile data handler is just simply one or more instructions which reads data from
volatile storage and then writes it into the BAKMEM registers or the PERSISTENT()
function.

Enter a Low Power Operating Mode

 in the configuration sequence is a single instruction that places the
microcontroller into a specific low power operating mode.

In other words, after a successful power-up, all the preceding routines will be exe-
cuted, and then the flow of execution will come to this instruction, which tells the
CPU to put the microcontroller to sleep.

Only a CPU interruption will wake up the microcontroller and put it into the active
operating mode.

Input Signal Sequence

The input sequence is the block of routines in the event-driven pattern as
shown by diagram 42 on page 120. It starts with an event which produces a signal.

Decision and Output Signal Sequence

The decision and output sequence is the last block of routines in the event-driven pat-
tern. With the CPU having the first instruction to the ISR and the microcontroller in
active mode, the ISR is now executed.

126 Patterns for Program Development

Inside the ISR is a sequence of three basic routines. The servicing routine carries out
the decision making instructions and then the result of the decision produces an out-
put which tells a peripheral module to act in some way.If the microcontroller will be
going back into a fractional low-powered operating mode, and the resulting data from
the decision must be saved, then a volatile data handler will be executed. If a conven-
tional low powered mode will be re-entered, there is no need to protect volatile data.

 in the sequence is an instruction which clears the flag bit to zero. A
concept called an interrupt vector will be introduced later in this book. It binds one or
more flags to a single ISR. If the vector binds just a single flag to an ISR, then such
flags are automatically cleared. If the vector binds more than one flag to an ISR, the
ISR will have to determine which flag was set, and then transfer the flow of execu-
tion to the proper subroutine in the ISR to handle the event and then clear the flag.

The latest models of MSP430 are now being built with a special type of register
called an

.

Once the last instruction in the ISR has been executed, the microcontroller is auto-
matically put back into the same low-powered mode of sleep from where it was inter-
rupted.

Chapter 20

Placing the Event-Driven Pattern into a Larger Context

The event-driven pattern, which was introduced by the previous chapter, can be better
understood when placed into a larger context. That means viewing the pattern as
being surrounded by all the supporting firmware routines, built-in microcontroller
routines, physical connections, and the relationships between them all. As shown by
diagram 43, it is the big picture of what we must take into account when developing a
program for the MSP430.

The firmware image we develop and load into the microcontroller is built of four
components: the boot program, the main() function, the ISR, and the preprocessing
translation units. A standard template, which is automatically included in a Code
Composer Studio development project, is used by the MSP430 compiler to build the
boot program. But we may insert instructions which augment the template. For exam-
ple, instructions which handle the watchdog timer or change some registers before
main() is called. As for the main() function, we must develop the entire function.

After main(), we are then concerned with the preprocessing translation units. These
units do not represent an ordered sequence. We have to develop some of these units,
while others are pre-developed.

128 Placing the Event-Driven Pattern into a Larger Context

Diagram 43: The event-driven pattern
as it is placed into a larger context.

The block of conventional C lan-
guage translation units enable us
to produce and use modular
blocks of instructions for devel-
oping the program. The block of
MSP430 translational units
enable us to use and produce
proprietary modular blocks of
MSP430 code for developing the
program. During the program
preprocessing and compilation
process, those translation units
are expanded and inserted into
the firmware image. Some of the
units are absolutely needed,
while others are not. Their usage
depends on the needs of the pro-
gram.

There are two event-driven pat-
terns of development in the dia-
gram. The first is of the ISR-
based pattern that was intro-
duced on page 120. It is built
with the block of main() func-
tion routines and the block of
CPU interruption routines. The
microcontroller's primary use
case is focused on this pattern.
The second is of the NMI-based
pattern. It supports the micro-
controller when something goes
wrong. Therefore, the microcon-
troller's secondary use case is
focused on that pattern. It is built
of the reset routines, boot pro-
gram, and main() function. As
you can see, the two patterns
have some overlap.

Except for the ISR-based event-
driven pattern, since it was
explained by the previous chap-
ter, the remaining sections of this

Physical Interfacing and Power Up
1
2
3
4
Supply Voltage Supervision
5

6
Reset Routines
7
8
9
10
11
Boot Program
12
13
14
15
16
17
18
main() Function
19
20)
21
22
23
24
25
26
27
28
29

CPU Interruption
30
31
32
33

Conventional C Translation Units
34
35
36
37 ctions
MSP430 Translation Units
38
39
40
41
42
43
44
45

Co
nfi

gu
ra

ti
on

 R
ou

ti
ne

s

Fi
rm

w
ar

e
Im

ag
e

(in
clu

de
s t

ra
ns

lat
ion

 un
its

 an
d I

SR
)

Pr
ep

ro
ce

ss
in

g
Tr

an
sl

at
io

n
U

ni
ts

(C
om

pi
le

d
in

to
 th

e
Im

ag
e)

IS
R-

Ba
se

d
Ev

en
t-

D
ri

ve
n

Pa
tt

er
n

N
M

I-B
as

ed
 E

ve
nt

-D
ri

ve
n

Pa
tt

er
n

Input Signal

Watchdog

Event

NMI
NMI

Brownout or NMI

Start Event

Output Signal

T. N. Krnich 129

chapter will elaborate on the items shown by diagram 43. Also, a special topic is
inserted prior to the section about the reset routines. It's about the operating mode
diagram that can be found in every MSP430 user guide. It explains important infor-
mation which puts the reset system and the remaining routines into yet another oper-
ating context.

Physical Interfacing and Power-Up

The physical interfacing tasks involve connecting a peripheral device to the micro-
controller. The power-up event is the application of electricity that energizes the
microcontroller.

At line 1, the circuits which interconnect the peripheral device with the microcontrol-
ler are designed, fabricated, and then installed. Depending on the type of peripheral
device, either an input circuit, an output circuit, or both circuits are needed. The cir-
cuits condition the signals to be within the microcontroller's operating specifications.
For input signals, conditioning means to bring and maintain the voltage and current
to within the specifications which the microcontroller can accept. For output signals,
it means to convert the voltage and current to the specifications which are needed by
the peripheral device.

Line 2 represents the

There is one last matter about connecting power to the microcontroller. It has to do
with controlling noise at the VSS and VCC pins. Those pins are typically very close
to each other, if not right next to each other. Fluctuations in power demand can act to
create a small noise signal across those pins, and that noise may affect the operation
of the microcontroller. So to mitigate that noise, we use a circuit to decouple those
two pins. The circuit will typically involve a couple of capacitors. One circuit is used
for the digital power pins (DVSS and DVCC) and another is used for the analog
power pins (AVSS and AVCC). The microcontroller's data sheet will tell you what is
specifically needed. The section is called "power supply decoupling" or something
like that.

130 Placing the Event-Driven Pattern into a Larger Context

Line 3 represents all unused pins on the microcontroller and how they must be prop-
erly terminated. Although each microcontroller has its own requirements, this is what
you can expect. For unused port pins, they should be configured to the signal output
direction. Pins which supply JTAG services are used for loading firmware into the
microcontroller and for running the microcontroller in debug mode. They are typi-
cally multiplexed with other services, so they should be switched to the I/O port func-
tion and then put into the signal output direction. For the microcontroller which has
pins where analog voltages are supplied (typically for an analog to digital converter),
the AVCC pin should be connected to DVCC, and AVSS should be connected to
DVSS. For complete information about these matters, see the microcontroller's user
guide and data sheet. Both documents have sections which are named "Connection of
Unused Pins," or a similar title.

A start event points directly into line 4, the power-up. The power supplying event can
be caused by any type of device which directly applies the required amount of power
to the DVSS and DVCC pins on the microcontroller. The power could be from a
switch, a voltage regulator, or just simply a direct connection to a battery. Once the
required amount of energy is reached, 1.8 to 3.6 volts DC, the microcontroller begins
to operate.

Supply Voltage Supervision

This discussion follows the path through the digital voltage supply (DVCC) pin. The
analog supply (AVCC) has its own separate but similar path into the microcontroller.

The supervisor is made of at least two logic circuits. One circuit monitors the voltage
as it rises through the power-up event threshold, called VSVSH+. The other circuit
monitors the voltage as it falls through the power down event threshold, called
VSVSH-. Those acronyms are used in the data sheets, while the user guides typically
use slightly different acronyms.

T. N. Krnich 131

.

From a program development point of view, this is what we need to know (with some
creative license). During a power-up, when the power-up supervisor recognizes that
the voltage has risen above and remains above the power-up event threshold
(VSVSH+), the supervisor then creates a delay of about 10 milliseconds to allow the
microcontroller to become properly energized. After that amount of time has passed,
the supervisor produces a signal that results in a BOR signal. On the other hand, dur-
ing a voltage brownout scenario, when the power down supervisor recognizes that
the voltage has fallen below and remains below the power down event threshold
(VSVSH-), the supervisor produces a signal that tells the power management module
to properly remove power supplied to the microcontroller. When power comes back,
the power-up supervisor handles that event. User guides will not explicitly name
these two types of supervisors, but instead they refer to them as the brownout circuit.

Operating Mode Diagram

Before going onto the reset system, an introduction to the operating mode diagram is
in order. Having knowledge about this diagram will help you to better understand the
event-driven pattern and its larger context, which the remaining sections in this chap-
ter will describe.

The reset system's purpose is to carry out a sequence of routines which initialize or
re-initialize the microcontroller. If

When compared to the initialization scenario, re-initialization has a larger context
since NMIs, brownouts, and operating modes are involved. The microcontroller's
user guide publishes a diagram which shows the operating modes, the reset phases,
the events which cause NMIs, and their relationships. It's called the operating mode
diagram, and an example of it is shown by diagram 44. Unfortunately, it does not
explicitly take into account the maskable CPU interruptions. Otherwise, it would be a
complete view of the microcontroller's operating modes.

132 Placing the Event-Driven Pattern into a Larger Context

Diagram 44: The typical operating mode diagram as published by an MSP430’s user guide. It shows the
operating modes, the reset phases, the events which cause NMIs, and their relationships.

The operating mode diagram uses

.

.

The power-up event is not shown. It is a phase where the microcontroller begins
unpowered and reaches the required operating voltage. If it were shown, it would be
located above the BOR with an arrow from itself to the BOR.

BOR

POR

PUC

Security
violation

SW BOR
event

WDT Active
Time expired, Overflow

FRAM
Uncorrectable Bit Error

RST/NMI
(Reset wakeup)

Port wakeup

Peripheral area fetch

SVS faultH SW POR
event

Load
calibration data

Active Mode: CPU is Active
Various Modules are active

LPM0:
CPU/MCLK = off

ACLK = on
V = onCORE

LPM2*:
CPU/MCLK = off

ACLK = on
= onVCORE

LPM3:
CPU/MCLK = off

ACLK = on
= onVCORE

LPMx.5:
= off

(all modules off
optional RTC)

VCORE

CPUOFF = 1
OSCOFF = 0

SCG0 = 0
SCG1 = 0

CPUOFF = 1
OSCOFF = 0

SCG0 = 0
SCG1 = 1

CPUOFF = 1
OSCOFF = 0

SCG0 = 1
SCG1 = 1

PMMREGOFF = 1

PMM, WDT
Password violation

†

†
†

to LPMx.5

From active mode

Events

Operating modes/Reset phases

Arbitrary transitions

† Any enabled interrupt and NMI performs this transition
‡ An enabled reset always restarts the device

RST/NMI
(Reset event)

‡

Brownout
fault

RTC wakeup

LPM4:
CPU/MCLK = off

FLL = off
ACLK = off

= onVCORE

CPUOFF = 1
OSCOFF = 1

SCG0 = 1
SCG1 = 1

†

†

T. N. Krnich 133

All the reset phases and their release to the active operating mode, which appear in
the operating mode diagram, are shown on lines 4 through 11 inside of the larger con-
text presented by diagram 43, on page 128. And the low powered modes of sleep are
all represented by line 29, including the fractional low powered mode.

NMIs are produced by events which typically occur at system modules. Such reset
events are in the form of operating faults, security faults, real time clock (RTC)
counter overflows, and an external reset (RST) signal at a digital I/O pin which is
specifically configured to produce a reset NMI.

Not explicitly shown by the operating mode diagram are

Unlike the transitions from a conventional low powered mode to the active mode, the
transitions from a fractional low power operating mode do

At the bottom of the diagram are four low powered operating modes. Next to each
mode is a list of four items. The items represent the bitfields in the CPU status regis-
ter and whether they are set or cleared for entering a mode.

If the CPUOFF bitfield is set, that turns off the CPU. When the OSCOFF field is set,
that disconnects the clock module from an external oscillator, such as a watch crystal.
The two SCG fields are used for turning off the various clock signal buses. So
depending on the combination of the two bitfields, some combination of the main
clock bus (MCLK), the sub-main clock bus (SMCLK), or the auxiliary clock bus
(ACLK) can be turned off. The CPU status register table gives the complete details.
Also refer to the microcontroller's data sheet for a full characterization of each oper-
ating mode. The section is called "operating modes," obviously.

To place a microcontroller into a specific operating mode,

The remaining matters which are of concern to us are the SW BOR event, the SW
PUC event, and Vcore. The SW means software, but in this book it means firmware

134 Placing the Event-Driven Pattern into a Larger Context

(FW). So what is pointed out here is an instruction in our program that sets an inter-
rupt flag in some register that forces a restart at a BOR or a PUC. Setting the flag is
the event.

As for Vcore, that refers to core voltage. The power management module is responsi-
ble for managing and distributing power throughout the microcontroller. More spe-
cifically, a dedicated

For a complete list of maskable and non-maskable CPU interruptions, see the micro-
controller's data sheet. The section is usually called the "Interrupt Vector Table."

Reset Routines

The reset system's purpose is to use one or more phases in a sequence to initialize or
re-initialize registers, then load the first instruction of the boot program into the CPU,
and then put the microcontroller into the active operating mode. Initialization means
to clear or set bitfields to an initial state of operation. Each phase is responsible for
handling their set of bitfields. Therefore, we can say that a phase is initializing to a
BOR, POR, or PUC state. However, the phases do overlap with their initialization
work. Meaning, each phase may initialize the same register, but they will not initial-
ize the same bitfields.

A power-up or supply voltage brownout event starts a process that properly energizes
or re-energizes the microcontroller, and when finished, to produce a signal that tells

T. N. Krnich 135

the first reset phase (BOR) to begin working. The energizing process is typically han-
dled by a supply voltage supervisor (SVS), or the power management module
(PMM), or by both.

There are several types of events which will produce a system reset (re-initialization)
signal. They are referred to as system reset interruptions. Each type of reset interrup-
tion has a dedicated block of event monitoring logic to produce a BOR, POR, or PUC
reset signal. The common name for a reset signal is just simply its event name.

From a program development point of view, we are interested in

• ,
• ,
• ,
•
•
• .

Taking that information into account will help us develop a program that will prop-
erly configure the microcontroller, but it will also help us to develop a program that
properly handles events which cause the microcontroller to be reset.

The microcontroller's data sheet will tell us all the events which will initialize and
reset the registers along with their interrupt flag names. The section is typically called
the “Interrupt Sources, Flags, and Vectors or the Interrupt Vector Table and Signa-
tures.”

Every register table will show which bitfields are initialized, by which phase, and to
which binary state. Under the register diagram is initial condition notation that identi-
fies which bitfields in a register will be set or cleared by a BOR, POR, or PUC. The
preface in the microcontroller's user guide shows a table that describes all the nota-
tions and their meanings, while an example of it can be found on page 48.

An explanation of every register's initial state is beyond the scope of this book, so
only an overview and the most significant characteristics of each reset phase are pre-
sented here. For complete information, refer to the individual register tables, which
are published by the microcontroller's user guide.

Brownout Reset (BOR)

The first generation of MSP430 microcontrollers did not have a brownout reset
(BOR) phase, at least not explicitly published by their user guides. Later generations
all explicitly come with this reset subsystem.

.

Three types of events will produce a
 the

136 Placing the Event-Driven Pattern into a Larger Context

set of events which will cause a BOR is typically the largest, but not by very much.
And the latest generation of microcontrollers will set a flag to indicate the event.

The type of events which will produce a BOR

As an aid for programmatically handling those events,

The set of bitfields which the BOR will initialize are also limited. In models which
have a richer set of features, the BOR subsystem will, for example, configure regis-
ters for the system control module, the power management module, the FRAM con-
troller, and the memory protection unit.

When referring to a register table, the bitfield initial condition notation for a BOR is
in the form of a zero or 1 placed in square brackets. For example, a [0] or [1] means
the field is cleared or set by a BOR.

From a fault handling perspective, keep in mind that an overflowed watchdog timer
will only restart the microcontroller at the PUC subsystem, so being able to use an
instruction to force a restart at a BOR provides us with an alternate point to restart
when a PUC does not clear an operating problem.

Once the BOR has finished its work, it produces a POR signal that tells the next reset
subsystem to start.

Power-On Reset (POR)

As compared to the BOR and PUC, the set of events which will cause a POR is typi-
cally the smallest. Current generations of microcontrollers only have

In contrast to a BOR, a POR will configure a significantly larger set of registers to a
POR state. When reading the register diagram, the POR initial condition notation will
appear as a zero or 1 in parenthesis, for example, (0) or (1), means it is cleared or set
by the POR subsystem.

T. N. Krnich 137

A watchdog timer overflow will not trigger a POR. It will only cause a PUC. There-
fore, using an instruction to force a restart at the POR or a BOR provides us with an
alternate point to restart when a PUC does not resolve an operating problem.

Once the POR has finished its work, it produces a PUC signal that tells that reset sub-
system to start.

Power-Up Clear (PUC)

The PUC is the , and it will configure many registers
to a PUC state.

These are the events which will cause a PUC to occur:

•
•
•
•
•
•
•
•
•
•

Here is what those events mean.

.

Although the memory address space for an MSP430 ranges from zero to 65,536 (and
higher for the CPUX), that does not mean the entire space is filled with memory.
Microcontrollers come with different amounts of memory. Some come with large
amounts of memory while others come with small amounts of memory. Therefore, if
the program reads from any address which is vacant of memory, the value 3FFFh
(16,383) is returned. Or if the program executes an instruction which fetches an
address from vacant memory or a segment of protected memory, that causes a PUC
NMI, also called a fetch from a peripheral area [in memory]. A fetch is an Assembly
language term for an instruction that redirects the flow of execution from the next
instruction in the flow to another point in the program. In the C language a decision
or the result of a decision is an abstraction of the fetch.

The last type of event which will produce a PUC is caused by the FRAM controller.
FRAM is nonvolatile memory, and it is used for storing the program. It is able to con-
sume less energy than conventional nonvolatile memory technologies, such as

138 Placing the Event-Driven Pattern into a Larger Context

SRAM. However, one of its characteristics requires that when an address is read, its
data must be written back into the address. The writing work is done automatically by
the FRAM controller, and it includes a process which detects uncorrectable writing
errors. If such an error occurs, it is called an uncorrectable FRAM bit error, and that
error produces a PUC.

One of the most important initializations which the PUC makes involves the

.

Also of significance during a PUC is what it does to the reset (RST/NMI) pin, the
digital I/O pins, and the CPU status register. The reset pin is

The register initial condition notation is simple for this phase. To show that a bitfield
is configured by the PUC, the bitfield initial condition is just simply denoted with a
zero or 1, without any punctuation.

A single interrupt flag is typically associated with a PUC, but that can change with
later generations of the MSP430. That flag is set to indicate a watchdog timer over-
flow. The PUC does not clear it, nor does anything else, so we must include an
instruction somewhere in order to clear it, typically inside of an ISR. To determine if
other flags are associated with a PUC or set by it, see the operating mode diagram or
the reset circuit logic diagram in the "System Reset and Initialization" chapter or sec-
tion of the microcontroller's user guide.

When the PUC has finished its work, it loads the memory address to the first instruc-
tion of the boot program into the CPU program counter register (line 10 of diagram
43 on page 128), and then the microcontroller is released to the active operating
mode (line 11). The program counter tells the CPU which instruction (address) in the
firmware image to execute next. With the program counter loaded, and the microcon-
troller in active operating mode, the CPU starts to execute our firmware at the boot
program.

MSP-BSL and boot.c

The typical MSP430 has two programs which include the word boot in its name, and
that can lead to confusion. So before going any further with the event-driven pattern,
a brief explanation about what distinguishes one program from the other is in order.
The first program is called MSP-BSL, and the second program is called the Boot Pro-
gram.

T. N. Krnich 139

MSP-BSL

This program's name is technically an acronym for the Multi-Signal Processor Boot-
strap Loader (MSP-BSL), but user guides and data sheets will typically call it some-
thing else. And that is where the confusion may occur. It was originally called
Bootstrap Loader, but now it is often called the Bootloader, the BSL, or the Boot
Code. This book will call it MSP-BSL. During MSP430 production, the factory loads
a copy of MSP-BSL into a dedicated section in main memory, and it stays there per-
manently.

Its purpose is to

Tools are needed for sending commands and data, such as a firmware image, to the
MSP-BSL program. The tools connect to

And finally, there is a BSL program for models of the MSP430 which are built of
Flash memory and another one which is for models of the MSP430 which are built of
FRAM memory. Further explanations about the MSP-BSL are beyond the scope of
this book. But for more information, use the following sources of information.

• MSP-BSL home page at www.ti.com/tool/mspbsl
• USER'S GUIDE: MSP430 Flash Device Bootloader (BSL) - SLAU319
• USER'S GUIDE: MSP430 FRAM Device Bootloader (BSL) - SLAU550

Boot Program

The Boot Program's purpose is to execute a set of instructions immediately before our
main() program, as will be explained by the next section. Every time we use Code
Composer Studio (CCS) to build and load our program into the microcontroller, it is
automatically built into our firmware image. The name of this file is boot.c, and it's
written in the C language, so we may edit it to include additional instructions.

There is one single boot.c template file that is shared among every MSP430 CCS
project we create. In other words, when we build our main() program, CCS copies
that file into our firmware image. The original boot.c file remains unchanged.

Now about its location. CCS has a subdirectory named Compiler. It contains subdi-
rectories for different MSP430 compilers. Every time CCS is updated, it typically
includes a later version of the MSP430 compiler, which is added to the compiler

140 Placing the Event-Driven Pattern into a Larger Context

directory. Older compilers are not deleted so we may choose to use them with a spe-
cific development project. Within each compiler directory is a subdirectory named
SCR. The boot.c file is located in the SCR directory. Therefore, a single boot.c file is
shared among all projects which use the same compiler version.

This book will refer to the boot.c file and the instructions it contains as the Boot Pro-
gram.

Boot Program Execution

The reset system completes its work with loading the address to the first instruction
in the boot program into the program counter, and then the microcontroller is released
to the active operating mode so the boot can be executed. At the end of the boot pro-
gram is an instruction that calls the main() function so it can be executed.

Technically speaking, the boot program is a

.

The templates are actually sets of boot function parameters. During a build, the com-
plier chooses the appropriate set from among the templates. Then the set is placed
into the parameter list of the boot function. That chosen set of parameters will be
used to initialize the firmware image in a way which is appropriate for the image and
microcontroller model. The choice is automatically made by the compiler, which is
configured and set by the project build properties.

The properties are automatically made and configured when we create our firmware
project. After the project build settings are configured, we may manually make
adjustments to those settings, but that topic is beyond the scope of this discussion.
However, it is explained by the “MSP430 Optimizing C-C++ Compiler User’s
Guide” (SLAU132).

The chosen suffix for the boot function name represents the parameter template that
was selected. When we put Code Composer Studio into debug mode (essentially
loading the image into the microcontroller and running it), we can see that function’s
name displayed in the Debug window pane. We can also find that name inside of the
image by displaying the Disassembly window pane. As for the templates, they can be
found in the boot.c file.

T. N. Krnich 141

Let's now take a closer look at the sequence of routines in the boot function.

Initializing the Program Execution Stack

The first routine in the boot function (line 13 of diagram 43 on page 128), will initial-
ize the program execution stack. The stack is an essential data structure needed by the
program in order to

.

The stack is automatically created by the MSP430 compiler, and the top of it is typi-
cally placed at the highest address in RAM.

Initializing the Memory Protection Unit

After initializing the stack, and if the microcontroller includes a memory protection
unit (MPU), then the MPU is automatically initialized (line 14 of diagram 43 on
page 128). The purpose of the MPU is to protect the FRAM sections of main mem-
ory. Registers are used for configuring the MPU to divide the FRAM into variable
sized segments, and then to place access control over those segments. For example,
read, write, and execute access control over the instructions and data in each seg-
ment. You would want to use the MPU if your program contains intellectual property
which you want to hide and protect.

Execute a Pre-Initialization Function

If a pre-initialization boot hook function has been defined, then at line 15 it is exe-
cuted. That function name is _system_pre_init(), and it is defined as a preprocess-
ing translation unit at line 40.

Pre-initialization means

 .

Here is the rationale. If our program has man

.

To mitigate that scenario, we insert an instruction into this pre-initialization boot
hook function that will put the timer on hold or setup the timer to use an appropriate
interval.

142 Placing the Event-Driven Pattern into a Larger Context

Initialize Global Variables

As we know, a global storage variable is class of data storage in the C language. It is
simply created by writing an instruction that declares an identifier as a specified type
of variable, but the instruction must be outside of any function, meaning, outside of
the main() function and all global functions. Having that global scope allows the
variable to retain its value throughout the execution of the program.

The compiler places storage variables in a section of addresses located in volatile
main memory, so data in that section is lost when the microcontroller is off. Off is not
to be confused with most low power operating modes which do not remove power
from the memory module. However, the fractional low power modes (LPMx.5) do
remove power from main memory.

So the initialization of global variables (at line 16 of diagram 43 on page 128) means
that we put instructions in the boot which write data into those variables so they will
be ready (initialized) with data before main() is called.

For global variables which are not assigned or initialized to a specific value, the com-
piler will .

If writing your firmware in the C++ language, all object constructors will also be ini-
tialized at this time.

 .

Call the main() Function

Line 18 is just simply a single instruction that calls the main() function. It is the last
instruction in the boot program, so it tells the CPU to load the address to the first
instruction of main() into the CPU program counter register so it will be executed.

main() Function

The main() function starts at line 19. It represents the main sequence of routines in
our program. All the routines and their sequence which form main() were explained
earlier by the “Event-Driven Pattern of Program Development” on page 120, so they
will not be repeated here.

CPU Interruption

Events which occur at peripheral modules are what we develop the program around.
They are the focus of the event-driven pattern. And keep in mind that the typical

T. N. Krnich 143

event-driven scenario begins with the microcontroller in some low powered operat-
ing mode of sleep.

The event produces an input signal, and then on line 30 the signal is sensed and sets
an interrupt flag. On line 31 of diagram 43 (page 128), the interrupt system loads the
address to the first instruction of the proper interrupt service routine (ISR) into the
CPU, and then the system puts the microcontroller into the active operating mode so
the ISR can be executed. At line 32, the ISR is executed.

Inside of the ISR are routines which get data to make a decision, and then use the
result of the decision to produce an output signal (line 32). The data is obtained by
reading it from the input module's registers, and to possibly help with the decision,
data is also read from storage variables. The ISR will also include routines for saving
volatile data and for clearing the interrupt flag.

Also keep in mind

When finished with the ISR, the microcontroller is automatically put back into the
operating mode from where it was interrupted. The actual ISR is defined later on line
42. For more information, this entire asynchronous sequence was introduced and
elaborated on by the “Input Signal Sequence” on page 125.

Preprocessing Translation Units

A preprocessing translation unit is code that we write in the C language, which is
meant to be outside of the main() function, but it is referred to or used by one or
more instructions from inside of main(). The units are written into the same file that
contains the main() function. However, some types of units may refer to the actual
translation units which are located in another file.

Translation units are handled

.

For example,

There are two significant types of translation units: directives and intrinsics. A pre-
processor directive begins with a hash mark (#). An intrinsic function will begin with
either one (_) or two (__) low lines, but later versions of the preprocessor will recog-
nize some intrinsic functions without using the low lines. Intrinsic functions are only

144 Placing the Event-Driven Pattern into a Larger Context

recognized by the MSP430 preprocessor, since they are intrinsic to it and not part of
the standard C language. Use the "MSP430 Optimizing C-C++ Compiler User's
Guide" (SLAU132) to learn about all functions which are intrinsic to the MSP430.

To help explain the translation units shown by diagram 43, they are all listed after the
main() function, but in practice, some will partially or completely precede it. For
example, #include directives and function prototypes must be placed before main(),
while function definitions are placed after main().

We have two categories of translation units. The first category is the conventional
translation units which are recognized by the standard C language compiler. The sec-
ond category is the MSP430 translation units which are only recognized by the
MSP430 C preprocessor.

#include Preprocessor Directives

At line of diagram 43 on page 128, is a preprocessing translation unit called an
#include preprocessor directive. It causes a copy of the specified file to be included
in place of the directive; for example, #include <math.h>. The type of header files
which are discussed here are from the standard C and C++ language library of files,
but they can also be programmer defined library files. They are also referred to as
header files. The programmer type of file is one that we created to provide special-
ized portable code which can be included in any of our projects.

When Code Composer Studio (CCS) is installed, the installation process creates sev-
eral

.

CCS provides a Project Explorer window pane that organizes all our project files into
individual project directories. Every project directory has an includes subdirectory
that contains two links which point to those two subdirectories of libraries which are
physically located in the root directory of CCS.

The first link points to the c subdirectory. Its purpose is to hold a
mixture

Within the project root directory, we may add our own custom written library header
files as preprocessing units.

T. N. Krnich 145

When writing an #include preprocessor directive, we have two different syntaxes.

Code Example 30: The different two syntaxes which we may use for including external files
into a firmware image build.

1 > //first syntax
2 //second syntax

The difference between these is the location where the preprocessor begins searching
for files to be included. If the filename is enclosed with angle brackets, the preproces-
sor starts looking in the include directory. If the filename is enclosed with quotation
marks, the preprocessor starts looking in the project root directory.

#define Preprocessor Directives

Code Example 31: The syntax for a #define directive that declares a constant value.

1

When this line appears in a code file, the preprocessor replaces all subsequent occur-
rences of the identifier with the replacement-text. For example, #define PI 3.14159
will replace all occurrences of PI which follow the declaration with 3.14159.

A macro is a custom identifier, like the symbolic constant, which will be replaced in
our firmware program with the replacement-text before the program is compiled. But
the replacement-text is code that processes data, it's not a constant. For example, the
replacement-text could be an instruction that calculates the area of a circle. Macros
can be defined with or without arguments which get passed into the instruction where
the macro appears. When defining the macro, its identifier is appended with paren-
theses that enclose a parameter list which facilitates the passing of data into the
instruction. Just like a typical C function.

Code Example 32: The syntax for a #define directive that declares a macro.

1 // macro that defines a formula for a circle
2 // macro in an instruction that assigns a value to the variable area

Define Global Variables

At line we may declare one or more global storage variables. When declared out-
side of the main() function and all other functions, which are called by instructions

146 Placing the Event-Driven Pattern into a Larger Context

inside of main(), these global variables will be available for use, or accessed, by
every function in the program.

You may initialize a variable, having global scope or not, to a specific value, but if
you don't, the compiler will automatically initialize it to zero.

Define Conventional Functions

MSP430 Translation Units

We have eight types of MSP430 translation units which interest us:

#include <msp430.h>

Within the library of MSP430 header files is msp430.h. It is distinguished from all
the others, since it is essential for every development project. Its purpose is to act as a
cross-reference between our firmware project and the base header file for the specific
microcontroller model which we're developing code for.

Every model of MSP430 has its own base header file which is named where
the word is replaced by the microcontroller's model number. It contains all the
identifiers and their definitions which are unique to a specific model of MSP430.
These identifiers, which are published by the user guides and data sheets, represent
register variables, register bitfield masks, symbolic constants, and at least one other
#include directive. That directive includes instrinsics.h, a file that defines all the
MSP430 intrinsic functions. One of the functions in that file allows us to write inter-
rupt service routines.

#include Specialized MSP430 Library Headers

These header files will be written by either Texas Instruments or a third party. They
typically have to be copied into our project where the #include directive can find
them.

These libraries are typically part of a specialized . Such
libraries are written by Texas Instruments (TI), and they are made available through
the TI Resource Explorer at dev.ti.com. TI calls them software development kits
(SDK). Third party kits can be found at the home page for the individual microcon-
troller or at a third party's web site.

T. N. Krnich 147

Define a Pre-initialization Boot Hook Function

Define a Post initialization Boot Hook Function

Define an Interrupt Service Routine (ISR)

Define #pragma Directives

148 Placing the Event-Driven Pattern into a Larger Context

Chapter 21

Repetitive-Driven Programming Examples

The repetitive pattern is used for developing program code examples and program
code for carrying out tests. It is not typically used for developing programs for com-
mercial use. Two forms of the repetitive pattern are presented here: the sequential
pattern and the selection pattern.

Both patterns are written entirely inside of the main() function. They begin with a
sequence of instructions which configure and setup the microcontroller for operation.
Following that sequence is a single repetitive loop of instructions. The loop itself is
what characterizes the pattern as being repetitive. The instructions inside the loop are
what distinguish the pattern as being sequential or selection. The sequential pattern
does not depend on an input signal to produce an output signal, while the selection
routine depends on an input signal to produce an output signal.

Development Tools

All program examples are developed with Code Composer Studio. As for the hard-
ware platform, an imaginary generic development kit will play the role. It will have a
built-in power supply, microcontroller, peripheral devices, and peripheral interfacing
circuits. Imagine it as a typical LaunchPad development kit that Texas Instruments
offers. You should be able to use the example bitfield masks and register variables for
programming any MSP430, which have the same system and peripheral modules,
with little or no changes.

And finally, to help guide us, we use the development approach shown on page 103
and the reference model on page 110.

Repetitive Sequential Pattern

LaunchPad development kits always have a program example loaded in them by the
factory. It is in the form of this repetitive sequential pattern. It just simply repetitively
flashes an LED. The example is called Blinky. A template of the pattern is first pre-
sented in pseudo code, and then the template is used as a guide for developing Blinky
into a program written in C. For an elaborate introduction about this pattern, see
page 118.

Pseudo Code Template

Program code is a sequence of instructions which form an algorithm. Development of
an algorithm often starts with using English words to describe what each instruction
must do. Those words are called pseudo code. They are an abstraction of the program
code that will be written in C. Shown here is a pseudo code template of the repetitive
sequential pattern.

150 Repetitive-Driven Programming Examples

Program Example 1: Pseudo code template for using the repetitive sequential pattern.

1
2
3 {
4 /** SYSTEM SETUP **/
5 //
6 //
7 // g
8 //
9 //
10 //
11 //
12
13 /** REPETITIVE SEQUENCE **/
14 //
15 //
16 // r
17 //
18
19 // Flow of execution never reaches this instruction
20 }

Using a Repetitive Sequence to Produce an Output Signal

To collect the requirements we need for developing the program, we write a model
use case, examine the interfacing circuits, and then examine the port channel path-
way.

Model Use Case

A model use case is a written explanation about the form and function of the hard-
ware and firmware needed to flash an LED without an input signal. The model is
conceptualized as just simply to flash an LED for approximately every second with-
out depending on an input signal. The microcontroller has a built-in oscillator for
producing a clock signal. A power-up or reset configures the signal to oscillate at
very close to 1 megahertz.

The kit already has a power supply, an LED, and interfacing circuits, so only a pro-
gram is needed. The program must set up the microcontroller and then execute a
repetitive loop containing a sequence of instructions which toggle an output signal at
a pin. A circuit interfaces the pin with an LED.

Interfacing Circuit

Although we are not concerned with building any circuits, we need to learn about
which pin on the microcontroller's case is connected to the LED. Knowing the pin
number will help us determine the port channel, which in turn tells us which bitfields
must be configured to enable and use the channel.

There are two ways to learn about the pin.
.

Diagram 45 shows a couple of circuits which are part of the schematic for our kit.
The circuit on the left is the interface circuit for the LED, and the other is the micro-

T. N. Krnich 151

controller's case with its pins, connections, and port functions. Together, the two
images show that the interface circuit connects with pin 7 on the case and the output
signal must flow through channel 0 of port 1 (P1.0).

The component J10 refers to a two pin strip header where a shunt jumper connects
the pins. The jumper is removed when we want to use pin 7 with another interface
circuit.

Diagram 45: Shown are parts of a schematic which is published by a typical user guide for an MSP430
microcontroller kit.

Output Signal Pathway

After we know which port and channel the output signal will be using, then we deter-
mine which bitfields are needed for enabling and using a path through the channel.
We use the port input/output diagram to get that information, and it is published by
the microcontroller's data sheet. Shown by diagram 46 is the diagram for port 1.

The path through the channel is highlighted. The LED interfacing circuit and pin
number are added, so they do not appear on the original port diagrams. Keep in mind
that port I/O diagrams are generic in nature, meaning, a single diagram is used for all
eight port channels. All the channels and their functions are listed at the lower right
corner.

The solid squares in the diagram represent one or more bitfields in a register. The reg-
ister variable with a suffix appears next to the bitfield. The suffix is an abstraction
that represents the channel number; it is not part of the actual variable we use for
reading and writing into the register. For example, for a bitfield labeled as P1DIR.x,
the prefix P1DIR is the actual register variable name, and the suffix .x denotes some
channel number in the port. In other words, the suffix denotes some bitfield channel
number in the register, but it is not part of the actual variable name.

To elabotate on what was just said, each bitfield in a port register handles a specific
channel. So for reading or writing into a port register, we only need the register vari-
able and a standard bit (introduced on page 47). The bit is used as the mask for
accessing the specific channel in the port register. For example, to set a bit in channel
0 of the port 1 direction register, we use the variable P1DIR with the standard bit
BIT0.

DVCC24

DVSS 23
DVSS 18

P1.0/UCB0STE/TA0CLK/A0/VEREF+7

P1.1/UCB0CLK/TA0.1/A18

P1.2/UCB0SIMO/UCB0SDA/TA0.2/A2/VEREF-9

P1.3/UCB0SOMI/UCB0SCL/MCLK/A310

P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+3

P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A54

P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A65

P1.7/UCA0STE/SMCLK/TDO/A76

P2.0/XOUT21

P2.1/XIN22

P2.2/ACLK11

P2.313

P2.4/UCA1CLK15

P2.5/UCA1RXD/UCA1SOMI16

P2.6/UCA1TXD/UCA1SIMO17

P2.719

P3.0 12

P3.1/UCA1STE 14

P3.2 20

PAD 25

RST/NMI/SBWTDIO 1

TEST/SBWTCK 2

MSP430

RST SBWTDIO

SBWTCK

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P3.0
P3.1
P3.2

3V3

GND

B0_SDA
B0_SCL

LED1
LED2

BCL_TXD
BCL_RXD

A7

SW1

SW2

A6

A1 CLK

A1 MOSI
A1 MISO

TA0.1 A1 CS
1
2

J10

470
R6

Red
LED1

GND

P1.0 LED1

152 Repetitive-Driven Programming Examples

Let's now take a closer look at the path and the bitfields needed for enabling it.

The path is highlighted. It starts at the port 1 output register (P1OUT). It specifically
starts at the channel 0 bitfield of the register, as suggested by the suffix (.x). When an
instruction sets a bit in that field, a high logic [voltage] level is placed on the channel.

Diagram 46: Port 1 input/output diagram with the highlighted output signal from channel 0 out to LED1.
This is the typical diagram published by the microcontroller’s data sheet. It is a generic view of a single
port channel. All the channels which it represents and their functions are listed at the lower right corner.
This diagram is also referred to as the functional diagram for the digital I/O modules in a port.

A zero or 1 bit signal flows into a channel function multiplexer. The multiplexer is
used for switching between peripheral module services supplied to this same channel.
It is controlled by two bits in the port 1 function selection register (P1SEL). As
described by the microcontroller's user guide, those bitfields are cleared during a
power-up or reset. Therefore,

. Furthermore,

. The two bits in that multi-
plexer are also cleared to 00, which switches that multiplexer to P1DIR.

The port 1 direction register is used for enabling the buffered gate. The buffer uses
the zero or 1 from the P1OUT.x bitfield to decide on producing a low or high voltage
signal which is sent out to the pin. The port 1 direction register table says that after a
power-up or restart, its bitfields are cleared. Meaning, the buffer is closed and the

Buffered Gate

Pin 7

Q

0

1

D
S

Edge
SelectP1IES.x

P1IFG.x

P1 Interrupt

P1IE.x

P1IN.x

To module

P1SEL.x

From Module1
P1OUT.x

P1DIR.x

From SYS (ADCPCTLx)

A0..A7

11

From Module1

DVCC

DVSS

P1REN.x

EN

D

Bus
Keeper

From JTAG

To JTAG

P1.0/UCB0STE/TA0CLK/A0/Veref+
P1.1/UCB0CLK/TA0.1/A1
P1.2/UCB0SIMO/UCB0SDA/TA0.2/A2/Veref-
P1.3/UCB0SOMI/UCB0SCL/MCLK/A3
P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+
P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A5
P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A6
P1.7/UCA0STE/SMCLK/TDO/A7

2 bit

2 bit

10
01
00

11
10
01
00

From Module2
DVSS

LED1
(Red)

This bitfield is driven
by our program.

T. N. Krnich 153

channel is configured as an input. So to enable the buffer, we'll need an instruction
that sets a bit in field 0 of P1DIR.

After examining the path through the port 1 input/output diagram, we have deter-
mined that channel 0 of the P1DIR and P1OUT registers will have to be configured.
We'll set a bit in the direction register to open the gate, and we'll toggle a bit in the
output register to flash the output signal going to the LED.

The Program

After we learn about which bitfields are needed for configuring port 1 and using
channel 0, we can start writing instructions. We start with the block of system setup
instructions and then write the block of repetitive routines.

Program Example 2: The repetitive sequential pattern in C that will flash an LED without
depending on an input signal. It is based upon the pseudo code of program example 1.

1
2
3 {
4 /** SYSTEM SETUP **/
5 // Watchdog Timer Handler
6 // Set P1.0 to output direction
7 // Unlock Digital I/O Channels
8
9 /** REPETITIVE SEQUENCE **/
10 // Repetitive Loop - beginning
11 // OUTPUT Servicing Routine: toggle P1.0
12); // Instrinsic Function Delay Handler
13 } // Repetitive Loop - end
14
15 // Never reached
16 } // End of

Block of System Setup Instructions

There is very little to develop for setting up the system to prepare it for executing the
repetitive block of instructions. We will need a watchdog timer handler for halting the
timer, otherwise, it will force a system reset before the flow of program execution can
properly run the program. Nor do we need the timer for this application. Therefore,
we write an instruction, that simultaneously writes the password
(and timer hold (masks into the timer control register (

The repetitive sequence depends on only one peripheral module. It's the digital I/O
module, and it will be used for producing a periodic output signal on channel 0 of
port 1 (P1.0). Diagram 46 is also referred to as the Functional Diagram for the Digital
I/O Modules in a Port. The buffered gate must be enabled so signals can flow out the
channel. In other words, the channel signaling direction must be configured to pro-
duce output signals. The instruction just simply involves setting a bit in the port 1
direction register (P1DIR). Since the direction is for channel 0, we use the standard bit
BIT0 as shown by the instruction on line 6.

Most, if not all, microcontrollers come with a built-in oscillator which is used for pro-
ducing a clock signal. It's called the reference oscillator (and its signal is fed

154 Repetitive-Driven Programming Examples

into a sort of timing signal conditioning block of logic called the digitally controlled
oscillator (DCO). The reset system configures the DCO so it will produce a 1 MHz
clock signal. We will take that into account when developing the delay handler.

Since an external oscillator signal will not be used, we do not need an oscillator set-
tling handler. Nor do we need to configure any system modules. And since the reset
system will configure the channel 0 output function multiplexer to use the port 1 out-
put function (P1OUT), no output signal multiplexing instruction is needed.

Since this micrcontroller is built of the reset system locks all digital I/O
channels to a high impedance state. This effectively turns off the channels so signals
cannot flow in or out of the channels. But we need to use one of those channels.
Therefore, on line we use the mask for clearing a bit in a power manage-
ment control register (to unlock the channels.

And finally, since this is a non-critical application, any fault which will cause the
reset system to run, is not of importance to us. Therefore, no handler is
needed.

Block of Repetitive Sequential Instructions

A while() loop and the sequence of instructions inside of it characterize the behavior
of the repetitive sequential pattern. The loop begins at line and ends at line of
program example 2.

The loop uses a Boolean expression as a condition for making a decision. The expres-
sion is just simply the digit Therefore, the condition always evaluates to true, so
the flow of execution is transferred into and always back into the loop.

The first of two sequential instructions is the output signal servicing instruction,
shown on line

It toggles bitfield 0 of the port 1 output register (P1OUT). That bitfield handles the sig-
naling on channel 0.

Every time the instruction is executed, it will place onto or remove the

signal from the channel, depending on the current state of the bitfield.

The second instruction, on line is a delay handler in the form of an MSP430
intrinsic function. All this function does is force the CPU to count through an interval
of clock cycles, nothing else. The length of the interval is configured by the
placed into the function's input parameter.

We want the delay to be . Therefore, a little bit of research into the micro-
controller's user guide will help us choose an interval number. The clock system
chapter has a section that describes its operation. It says that a PUC configures the
DCO to produce a 1 megahertz signal. So an interval of cycles will create a
delay of .

T. N. Krnich 155

In reality, that interval will typically not produce exactly second, but very close
to it. For example, it might be seconds. Adjusting the number of clock cycles,
or trimming the DCO, or both can bring the delay to exactly one second. Clock regis-
ters can be used for trimming the DCO, while using measurement equipment and dif-
ferent amounts of cycles can bring the delay closer to one second. But there is a
caveat. All oscillators produce small amounts of jitter every so often in the signal.
That will make the period of the delay drift about a cycle every few seconds or so.
Beyond the loop, on line is a return statement. It will never be reached by the flow
of execution.

Repetitive Selection Pattern

This is the second type of repetitive pattern. Like the repetitive sequential pattern, it
has two blocks of instructions. The first one prepares the microcontroller for execut-
ing the second block of repetitive instructions.

It is the patterns inside of the repetitive blocks which distinguish the sequential pat-
tern from the selection pattern. Basically, the sequential pattern does not include a
selection control structure, such as an if(), if()…else, or switch() control struc-
ture for producing an output signal. The selection pattern will depend on one of those
structures to produce an output signal.

Two programming examples are presented. The first one uses an external input signal
for producing an output signal that flashes and LED. The external signal is produced
by a push button switch. The second example uses an internal input signal for pro-
ducing an output signal that flashes an LED. The internal input signal is produced by
a temperature sensor that is built into the microcontroller. Both program examples are
designed and expected to run, with little or no changes, on the typical MSP430 devel-
opment kit produced by Texas Instruments, such as the so called LaunchPad kits.

Pseudo Code Template

Shown by program example 3 is our pseudo code template. It is derived from dia-
gram 41, on page 119. It provides a framework for developing a repetitive selection
routine in the C language.

Using an External Input Signal for Selecting an Output Signal

To collect the requirements for developing this program, we write a model use case,
examine the interfacing circuits, and then examine the port channel pathway.

Model Use Case

This model is conceptualized as a power supply, button switch, microcontroller,
LED, and their interfacing circuits which are all built into a single kit. When the
switch is closed, the microcontroller will illuminate the LED. When the switch is

156 Repetitive-Driven Programming Examples

opened, the LED goes dark. A power-up or reset will automatically configure the
clock signal to run at 1 Mhz.

Program Example 3: Pseudo code template for using the repetitive selection pattern.

1 #
2
3 {
4 /** SYSTEM SETUP **/
5 //
6 //
7 //
8
9 /** REPETITIVE SELECTION **/
10 //
11 //
12 //
13 //
14 //
15 //
16 //
17 //
18
19 // Flow of execution never reaches this instruction
20 }

Interfacing Circuits

Although we will not be developing any interfacing circuits, we need to use our kit's
schematics to learn about which port channels the switch and LED will be using. Dia-
gram 47 shows those schematics.

We'll be using switch SW1. Notice that it is a single-pole single-throw (SPST) type of
switch. Terminal 1 is connected to ground, while terminal 2 is connected to pin 13 of
the microcontroller, and the schematics show that pin 13 is serviced by channel 3 of
port 2 (P2.3). The physical switch is in the form of a tactile button. It will be used for
producing an input signal.

The LED interface circuit is the same circuit used in the last programming example.
Therefore, channel 0 of port 1 (P1.0) will be used for driving that LED.

Diagram 47: LED and switch Interfacing circuits.

DVCC24

DVSS 23
DVSS 18

P1.0/UCB0STE/TA0CLK/A0/VEREF+7

P1.1/UCB0CLK/TA0.1/A18

P1.2/UCB0SIMO/UCB0SDA/TA0.2/A2/VEREF-9

P1.3/UCB0SOMI/UCB0SCL/MCLK/A310

P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+3

P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A54

P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A65

P1.7/UCA0STE/SMCLK/TDO/A76

P2.0/XOUT21

P2.1/XIN22

P2.2/ACLK11

P2.313

P2.4/UCA1CLK15

P2.5/UCA1RXD/UCA1SOMI16

P2.6/UCA1TXD/UCA1SIMO17

P2.719

P3.0 12

P3.1/UCA1STE 14

P3.2 20

PAD 25

RST/NMI/SBWTDIO 1

TEST/SBWTCK 2

MSP430

RST SBWTDIO

SBWTCK

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P3.0
P3.1
P3.2

3V3

GND

B0_SDA
B0_SCL

LED1
LED2

BCL_TXD
BCL_RXD

A7

SW1

SW2

A6

A1 CLK

A1 MOSI
A1 MISO

TA0.1 A1 CS
1
2

J10

LED1

GND

P1.0 LED1

12

S1

GND

SW1

T. N. Krnich 157

Switch Circuit and Its Operation

Diagram 48 shows two images of the port 2 input/output diagram. It is published by
the microcontroller's data sheet. These are slightly modified with additional labels
and highlighting to help illustrate the circuit's operation.

Diagram 48: Port 2 input/output diagrams showing the highlighted input signal path handled by SW1.

SW1

Buffered Gate

Pin 13

Schmitt Trigger

Q

0

1

D
S

Edge
SelectP2IES.x

P2IFG.x

P2 Interrupt

P2IE.x

P2IN.x

To module

P2SEL.x

From Module1
P2OUT.x

P2DIR.x

11

From Module1

DVCC

DVSS

P2REN.x

EN

D

Bus
Keeper

P2.4/UCA1CLK
P2.5/UCA1RXD/UCA1SOMI
P2.6/UCA1TXD/UCA1SIMO
P2.7

P2.3

2 bit

2 bit

10
01
00

11
10
01
00

DVSS
DVSS

Second State: Closed Switch Produces a Logical Low Input Signal

Q

0

1

D
S

Edge
SelectP2IES.x

P2IFG.x

P2 Interrupt

P2IE.x

P2IN.x

To module

P2SEL.x

From Module1
P2OUT.x

P2DIR.x

11

From Module1

DVCC

DVSS

P2REN.x

EN

D

Bus
Keeper

P2.4/UCA1CLK
P2.5/UCA1RXD/UCA1SOMI
P2.6/UCA1TXD/UCA1SIMO
P2.7

P2.3

2 bit

2 bit

10
01
00

11
10
01
00

DVSS
DVSS

First State: Open Switch Produces a Logical High Input Signal

Channel Function Multiplexers

Output Path

Input Path

158 Repetitive-Driven Programming Examples

To understand the operation of the switch circuit, we must visualize both of its oper-
ating states. The top image shows the state of the circuit when the switch is open and
producing a high input signal. The bottom image shows the state when it is closed
and producing a low input signal.

.

Now keep in mind this very important concept.

First State Operation: Switch is Open

In the first state, when switch SW1 is open, the circuit is producing a logical high
input signal. A high signal is produced at P2OUT.3, and a high signal is sensed at
P2IN.3. Five conditions must be present for that to happen.

 The lower multiplexer allows signals to flow from
P2OUT.3 to the buffered gate, while the upper multiplexer allows a logical high sig-
nal to flow from P2DIR.3 to the gate and enable it. The gate allows channel signals to
flow out towards the pin. But the switch is open, so instead, the signals flow down to
the Schmitt Trigger. That trigger is a block of logic that distinguishes the signal as
being a logical high or low signal.

Setting a bit in the channel 3 bitfield of the port direction register (P2DIR), produces
the third condition. The result sends a high signal to the gate.

Setting a bit in the channel 3 bitfield of the port 2 output register (P2OUT), produces
the fourth condition. It places a high signal on the output path of channel.

An open switch creates the fifth and last condition. After those five conditions are
created, channel 3 of the port 2 input register (P2IN) can be read to determine the
input signal. In this state, with the switch open, the signal will be high.

T. N. Krnich 159

Second State Operation: Switch is Closed

In the second state, when switch SW1 is closed, the circuit is producing a logical low
input signal. Meaning, a high signal is still produced at P2OUT.3, but a low input sig-
nal is now sensed at P2IN.3. Five conditions must be present for that to happen.

The first four conditions are identical to those of the first state.

When the switch is closed, the voltage signal flows out to the pin and into the ground
instead of flowing back onto the input path to the Schmitt Trigger. Absence of volt-
age at the trigger produces a logical low signal that clears the channel 3 bitfield in the
port 2 input register (P2IN). That bitfield then can be read to determine the input sig-
nal.

LED Circuit

Since the LED interface circuit is the same one as used for the previous programming
example, the path through port 1 is the same. For those details, see “Output Signal
Pathway” on page 151.

The Program

After we learn about which bitfields are needed for configuring channels P1.0 and
P2.3, we can start writing code. We start with the system setup instructions and then
write the repetitive routines.

Program Example 4: Code for using the repetitive selection pattern.

1
2
3 {
4 /** SYSTEM SETUP **/
5 // Disable the watchdog timer
6 // Set P2.3 direction outward to SW1
7 // Set P1.0 direction outward to LED1
8 // Clear signal at P1.0 to darken LED1
9 // Unlock the digital I/O channels
10
11 /** REPETITIVE SELECTION **/
12 // Repetitive loop - beginning
13 // Input Polling handler: read P2 inputs
14 // If input is 1, SW1 is closed, then
15 // 1st Output Svc routine: LED on
16 // Else, SW1 is open
17 // 2nd Output Svs routine: LED off
18 } // Repetitive loop - end
19
20 //
21 } //

160 Repetitive-Driven Programming Examples

Block of System Setup Instructions

Setting up the system to prepare it for the repetitive block of instructions is just sim-
ply on elaboration on program example 2 on page 153. Only two additional instruc-
tions are needed. One configures the signal input channel for switch SW1, and the
other assures that the LED is initialized to a darkened state.

).

Now to be organized, we use a systematic approach for developing the setup instruc-
tions. Meaning, we write instructions which first setup the input signal path, and then
we write instructions which setup the output signal path.

The signal input is handled by channel 3 of port 2 (P2.3). We use

 When closed, it's removed.

The reset system has already setup most of the channel's output path, while the input
path needs no setup. The output path only

). That bitfield handles channel 3.

For the output signal that flashes the LED, it depends on the same module that was
used by program example 2 on page 153. It's the digital I/O module (as shown by dia-
gram 46 on page 152), and it will be used for producing a periodic output signal on
channel 0 of port 1 (P1.0).

 7.

Since the reset system will configure the channel 0 output function multiplexer to use
the port 1 output function (P1OUT), no output signal multiplexing instruction is
needed.

Although not necessary, we use an instruction for initializing the output signal to the
LED. We want to assure that no signal is produced before the repetition block is
entered. So on line 8, an instruction uses the standard bit BIT0 to clear field 0 in the
port 1 output register (P1OUT).

This microcontroller i sbuilt of so a reset locks all digital I/O channels to a
high impedance state. But we need to use two of those channels. Therefore, on line 7
we use the LOCKLPM5 mask for clearing a bit in a power management control register
(PM5CTL0) to unlock the channels.

There is really no other set up needed. The reset system configures the digitally con-
trolled oscillator (DCO) to produce a 1 MHz clock signal. Since an external oscillator

T. N. Krnich 161

signal will not be used, we do not need an oscillator settling handler. Nor do we need
to configure any system modules. And finally, since this is a non-critical application,
any fault which will cause the reset system to run, is not of importance to us. There-
fore, no reset fault handler is needed.

Block of Repetitive Selection Instructions

A while() loop and the selection instructions inside of it characterize the behavior of
the repetitive selective pattern. The loop begins at and ends at as
shown by program example 4 on page 159.

The loop uses a Boolean expression as a condition for making a decision. The expres-
sion is the digit 1. Therefore, the condition always evaluates to true, so the flow of
execution is transferred into and always back into the loop.

Inside of the loop,

At line the handler reads the entire port 2 input register (P2IN) and assigns
it to a storage variable named state. Although eight bits are written into the variable,
the input signal is in the form a bit in field 3 of the register.

The double selection structure, which is in the form of an

The return instruction at line 20 is never reached because the flow of execution
remains inside of the loop.

Using an Internal Input Signal for Selecting an Output Signal

To collect the requirements we need for developing this program, we write a model
use case, examine the interfacing circuits, and then examine the signal pathways.
After we have that information, program development can begin.

Model Use Case

This model is physically conceptualized as a power supply, temperature sensor,
microcontroller, two LEDs, and their interfacing circuits which are all built into a sin-
gle kit. When the temperature is below 20ºC, green LED1 illuminates while red
LED2 goes dark. When the temperature is above 20ºC, green LED1 goes dark while

162 Repetitive-Driven Programming Examples

red LED2 is illuminated. This code is not optimized, so when the temperature is
20ºC, both LEDs will fluctuate. And finally, a power-up or reset will automatically
configure the clock signal to run at 1 Mhz.

.

Input Interfacing Circuit

A temperature sensor that is built into the microcontroller provides the input signal.
The output of the sensor is directly connected to one of the ADC input channels.
Therefore, no input circuit needs to be built.

In this case, the input channel is A12. The circuit is shown by diagram 49 on
page 163, and it is explained later by the “Input Path from the Temperature Sensor”
on page 164.

Output Interfacing Circuits

Two LEDs will be driven by the microcontroller. A green one will be driven to illu-
minate when the temperature is below a specific temperature. A red LED will be
driven to illuminate when the temperature is above a specific temperature. Since this
project is built into a development kit, the LEDS and their interfacing circuits already
exist.

By referring to the kit’s printing circuit board (PCB), or its user guide, we see that the
red LED is labeled as LED1. It uses the same interfacing circuit as used by a project
described earlier. That circuit is shown by diagram 45 on page page 151. It intercon-
nects LED1 with channel 0 of port 1 (P1.0).

The green LED is labeled as LED2. LED1 and LED2 are using circuits of the exact
same design, except that LED2 is connected to a different pin and port channel. It is
connected to pin 8, and that pin is connected to channel 1 of port 1 (P1.1).

Signal Pathways

The input signal will originate at the temperature sensor, located inside of or handled
by the power management module (PMM), and it will end at the ADC conversion
memory register (ADCMEM). The program uses the

The output signal begins at the digital I/O
module and ends at one of the LEDs, depending on the result of the decision.

Diagram 50 shows a portion of the typical block diagram for a PMM as published by
a user guide, and diagram 49 shows a typical ADC block diagram. The first diagram
shows the thin highlighted path where the input signal originates and flows out of the
PMM, while the second diagram shows the entire input path under a thick highlight.

T. N. Krnich 163

Diagram 49: A typical ADC block diagram as published by a user guide.

Diagram 50: This is a portion of a typical PMM block diagram as published by a user guide.

.

Diagram 46, on page 152, is of the typical digital I/O port block diagram as published
by the microcontroller's data sheet. It shows the highlighted output signal path from

ADC CoreSample
& Hold

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Auto ADCCONSEQx

ADCINCHx

Convert

ADC
BUSY

Sample Timer
4 1024÷ – ÷

ADC
MSC

ADC
SHTx

ADCCLK

ADCDIVx

Divider
1 8÷ – ÷

ADCON

ADC Clock Signal

Reference
Buffer

VCC

ADCSREFx

From on-chip reference voltage
(see the device specific
for buffer bypass)

÷4

÷64

Sync

Data Format

ADCMEM

Window Comparator

ADCHIx

ADCLOx

To Interrupt Logic

VSS

VEREF– VEREF+

ADCSSELx

ADCSHSx
ADCSHP

ADCISSH

ADCDF

ADCSREFx

01

00

11

00

01

10

11

00

01

10

11

1 0 11 01 10 00

10

01

0

1

0

1

ADCSC

MODOSC

ACLK

MCLK

SMCLK

Timer Trigger 0

Timer Trigger 1

Timer Trigger 2

ADCPDIVx

ADCSR

VR- VR+

ADCENC

SHI SHI
SAMPCON

VREF
(fr. PMM)

Temperature
Sensor

VREF (fr. PMM)

Single-Channel
Single-Conversion Mode
0b00

0bn000b0nn

0b0

0b000b0000b00b0

0b0000

0b000b0

0b00

0b0

1.2 V REF
Generation

EXTREFEN REFGENACT
REFGENRDY

Reference Control

REFVSEL

(Enhanced Shared
Reference)

Bandgap

REFBGRDY
REFBGACT

BGMODE

Bandgap Control

Temperature
Sensor

1.5/2.0/2.5 V
(Enhanced shared reference)

1.5 V Only
(Basic shared reference)

INTREFEN TSENSOREN

To ADC channel (device specific)
eCOMP built-in 6-bit DAC
SAC built-in 12-bit DAC

To ADC channel (device specific)

VREF+

0b0 0b0 0b0 0b0
0b0 0b0

0b0

164 Repetitive-Driven Programming Examples

the port to one of the LEDs. Although this project drives two LEDs, that same dia-
gram can be used for both LEDs by replacing the pin and LED numbers.

Those three preceeding diagrams help us determine which bitfields will be of concern
to us. They configure the paths so the signals can reach their destinations. That is a
prerequisite for preparing the microcontroller to execute the block of repetitive
instructions.

Although the register names are not shown, the initial state for every bitfield can be
found by referring to their register's table, which is published by the microcontroller's
user guide.

Input Path from the Temperature Sensor

The sensor is typically built into or managed by the PMM. It's powered by the PMM,
and its output is connected to an ADC input channel. The path has a PMM section
and an ADC section which are of concern to us. Futhermore, we are concerned with
the ADC control signals which carries out the sampling, measuring, and converting
process. There are four controls signals which are also of concern to us.

PMM Section. We first begin by

.

The user guide also makes two statements which concerns us. The sensor must be
energized by an internal voltage reference signal called VREF, and before writing to
any PMM registers, they must be unlocked.

The path for the shared voltage reference is highlighted by diagram 50. It starts from
the

 For our microcontroller, it says that only the basic 1.5 volt shared ref-
erence is built into the PMM.

Six bitfields are used for producing that basic shared reference. After searching for
the registers which they are in and reading about their control over the path, we learn
that only one bitfield is of concern to us. It is the Enable Internal Reference Voltage
(INTREFEN) field, in the PMMCTL2 register. It must be set (0b1) to enable the reference.

T. N. Krnich 165

A bandgap control block of circuits is shown. It is type of power management inte-
grated circuit technology. It uses the electrical bandgap in silicon to produce a fixed
voltage during power supply variations, temperature changes, and circuit loadings.

Current generations of the PMM utilize a password for accessing their registers.
Although one of its register tables will tell us that it is responsible for handling the
password, so does the introductory paragraph to the section about PMM registers.
Either way, we learn that most of those registers are password protected, including
the ones we need to configure. That means an instruction which unlocks the registers
must precede the PMM configuration instructions. To unlock the registers, a pass-
word mask is written into the proper register.

In this case, a sixteen bit register, named PMMCTL0, provides bitfields at the higher
address where the password is written into. The introduction to the PMM registers
also tells us about two options. We may use the 16-bit conventional register variable
with the 16-bit password mask for setting bits in those upper fields, or we may use
the higher 8-bits register variable, PMMCTL0_H, and assign the higher 8-bits password
mask, PMMPW_H, to it. The operation is what distinguishes one instruction from the
other. We'll be using the later technique.

ADC Section: Input Signal Multiplexing. The typical ADC block diagram, as
shown by diagram 50, shows the entire temperature sensor signal path into the ADC.
The internal shared voltage reference (VREF) energizes the sensor. The output from
the sensor is connected to input channel A12 where the multiplexer must switch that
channel to the sample and hold block.

For making that switch, two bitfields are involved. The first one is called

In this case, ADCINCHx is a

As for ADCCONSEQx, it is a mask in ADC Control Register 1 (ADCCTL1), and its table
says the initial state is 0b00, which is the Single-Channel Single-Conversion
Sequence mode. We want that mode, so those bitfields can be used as is.

A signal called

The second period con-
verts the measurement to a binary number, and then places the number into the ADC
Conversion Memory register (ADCMEM). When the signal is logically high, the entire
process begins. When the signal is driven low, the first period is stopped, and the sec-
ond period starts, and it ends automatically with the data written into ADCMEM. The

166 Repetitive-Driven Programming Examples

single-channel single-conversion sequence mode directs the ADC to carry out the
process for one channel and do it just once.

ADC Control Signals

These signals control the operation of the ADC. We are concerned with four types of
signals.

Voltage Measurement Scale. e

For the lower endpoint, diagram 49, on page page 163, shows a highlighted signal
path from VSS to VR-, and for the upper endpoint, it shows a path from VREF to
VR+. Two multiplexors handle the switching along those paths, and both are config-
ured with the 3-bit ADC Select Reference mask (ADCSREFx). The first bit of that mask
(0b0nn) configures the VR- multiplexor, while the last two bits (0bn00) will config-
ure the VR+ multiplexor.

By searching in the user guide for that mask name, we can find its register table. In
this case, it is ADCMEMCTL0, the same register where ADCINCHx is located.

Although the register table shows the options for configuring the endpoints, it does
not show us the mask suffix for each option (ADCSREFx). It can be found in the micro-
controller's header file as ADCSREF_1.

Keep in mind that this is a 10-bit ADC. That means

Clock Conversion Signal. A clock signal is needed for driving the ADC to work.
It's called the clock conversion signal.

The source for this signal is the built-in Module Clock (MODCLK) oscillator.
According to the user guide, it oscillates at a frequency of 5 Megahertz. Furthermore,
it does not get divided before entering the ADC core.

SAMPCON and SHI Signals. Recall that the SAMPCON signal tells the ADC to
carry out a sample, measure, and convert process. The process is divided into a
period for sampling and measuring and a period for conversion. When the signal is

T. N. Krnich 167

driven high, the first period is started. When the signal is driven low, the first period
is stopped, and the second period automatically starts and ends with the conversion
written into the ADCMEM register.

SAMPCON is actually driven by

As shown by diagram 49, the SAMPCON-SHI signal has two sources and two desti-
nations. One source is the ADC Sample-and-Hold Source Select multiplexor. It is
used for selecting between the ADC Start Conversion (ADCSC) bitfield and three dif-
ferent timer module triggers.

As for the two SAMPCON-SHI destinations, one goes into the Sample and Hold
block and the other goes into the ADC Core. They simultaneously tell those two
blocks to start and stop the sample and measuring period.

The highlighted signal path from the source select multiplexor to the sample and hold
block is the

.

Since the default configuration for the SAMPCON-SHI signal path can be used as is,
no configuration instructions need to be developed.

ADCENC and ADCON Signals. Two signals were added to the ADC block diagram,
as shown by diagram 49 on page 163. They do not appear in the original. One comes
from the ADC Enable Conversion bitfield (ADCENC), and the other comes from the
ADC On bitfield (ADCON). In this case, both are located in the ADCCTL0 register.

ADCON just simply turns on the ADC, while ADCENC has two purposes. The first one
enables or allows the ADC to work. The second purpose locks most of the ADC reg-
ister so they cannot be changed.

After a power-up or reset, ADCENC is cleared, so ADC registers are unlocked, but the
ADC is not enabled to work. Therefore, setting a bit in this field to enable the ADC
and lock ADC registers is typically the last ADC configuration instruction. The ADC-
MEM register where the converted data is written into is not affected by ADCENC.

Output Paths to LED1 and LED2

There are two paths. One from P1.0 to LED1, and the other is from P1.1 to LED2.
Both paths originate at a port channel and end at an LED. The paths are the same,
except where they originate and terminate are different.

The signal path from P1.0 to LED1 is shown by diagram 46 on page 152. Bitfield 0
(BIT0) of the port 1 output register (P1OUT) is used for driving the signal. The path to

168 Repetitive-Driven Programming Examples

LED2 is exactly the same, except bitfield 1 (BIT1) of the same port is used for driving
that signal. BIT1 and BIT2 are two of the standard masks used for manipulating bits in
port registers.

The Program

As shown by code example 33, two basic blocks of program code are used for devel-
oping this program. The first block (lines 3 to 25) is made of system setup instruc-
tions. It prepares the microcontroller for executing the next block of instructions.
That next is block (lines 28 to 43) is called the repetitive selection pattern.

The repetitive selection pattern is in the form of an infinite loop. It gets the raw ana-
log sample from the sensor output, measures it, converts it to a digital number, and
then writes the number to the ADC conversion memory register. The number is then
converted to degrees Celsius, and then used for making a decision. If the number (the
temperature) is below 20ºC, then the green LED is on. If it is above 20ºC, then the red
LED is on. The flow of program execution then goes back to the beginning of the
repetitive pattern and executes it again.

Block of System Setup Instructions

Four modules must be setup to prepare the microcontroller for executing the repeti-
tive block of instructions. They are the watchdog timer, the power management mod-
ule (PMM), the analog to digital converter (ADC), and the digital I/O module.

Write a Watchdog Timer Handler. The watchdog timer will not be needed, so it
will be turned off, as shown at line 3.

Setup the Sensor to Create Input Signals. The temperature sensor is handled by
the PMM. Four instructions are needed for setting up the PMM. The first instruction,
on line 6, assigns the higher eight bits password (PMMPW_H) to the higher eight bits of
the PMM Control 0 register (PMMCTL0_H). That allows the following instructions to
write into their respective PMM registers,

As a reminder,

The second instruction, on line enables the PMM's shared voltage reference
(VREF). That instruction uses the Internal Reference Enable mask (INTREFEN) for
setting bits in the PMMCTL2 register to enable the reference.

The third instruction, on enables the temperature sensor. The mask
is used for setting the sensor enabling bits in the same register (

T. N. Krnich 169

Code Example 33: Using the repetitive selection pattern for developing a program where the
interal temperature sensor creates an input signal and a decision is made about selecting
between two output signals.

.

1
2
3 // watchdog timer handler
4
5 /** Setup the PMM to Create Input Signals **/
6 H; // Allow access to PMM registers
7 // Enable internal reference voltage
8 // Enable internal temperature sensor
9 // Let the sensor settle
10
11 /** Setup ADC as the Input Signal Peripheral Module**/
12 // Switch ADC multiplexer to channel 12
13 A // Choose the VR- and VR+ references
14 //
15 // Enable conversions
16
17 /** Setup Digital I/O as the Output Signal Peripheral Module **/
18 // Set channel 0 of P1 as output to LED1
19 ; // Set channel 1 of P1 as output to LED2
20 ; //
21
22 /** Create Variables and Constants **/
23 // Raw sensor reading in millivolts
24 ; // Millivolts to ºC adjustment
25 // Raw sensor reading converted to ºC
26
27 /** Repetitive Selection Pattern **/
28
29 ; // Get a raw sample of the sensor output
30); // Allow ADC to measure the sample (>30 µs)
31 // Stop measuring the sample
32); // Allow ADC to convert sample (>13 cycles)
33 ; // INPUT: Get converted sample (millivolts)
34
35
36 // turn off green LED2, and then
37 // turn on red LED1
38 }
39 // OUTPUT 2: If temp is less than 20 ºC
40 ; // turn off red LED1, and then
41 // turn on green LED2
42 } // End if...else decision
43 } // End of while() loop
44 //
45 } // End of main() is never

On line 9 is an MSP430 intrinsic function that produces a four hundred clock cycle
delay in the flow of execution. Apparently, the sensor may need some time to settle
after it is enabled, but that specification could not be found by this author. So it may
not be needed. But since it was used in some programming examples produced by
Texas Instruments, it is also used here. It ends the instructions needed for configuring
the PMM.

Setup the ADC as the Input Signal Peripheral Module. Four instructions are
needed for setting up the ADC. The first one, on line 12, switches the ADC input

170 Repetitive-Driven Programming Examples

multiplexer to channel A12, since the temperature sensor output is connected to that
channel. The mask ADCINCH_12 is used for setting the appropriate bits in ADC Mem-
ory Control 0 register (ADCMCTL0).

As a reminder, the register table for ADCMCTL0 tells us that the mask ADCINCHx is used
for selecting a specific channel, but it does not give us the suffix x. To get the exact
mask name which includes the suffix, we search for it in the microcontroller's header
file. While in Code Composer Studio, the file is opened by typing the register vari-
able name into the program code file, selecting the variable, right mouse button click
to open a popup menu, and then select Open Declaration to get the file. Near the
ADCMCTL0 declaration will be the declarations and definitions for all of its masks. It
shows that ADCINCH_12 is the mask for channel 12.

The second instruction, on line 13, configures the ADC analog voltage measurement
scale to use specific voltages for its endpoints. The scale is used for measuring the
temperature samples (in volts). We want the lower endpoint (VR-) to use VSS
(ground), and the upper endpoint (VR+) to use VREF, the shared voltage reference
produced by the PMM. We want to use those endpoints because the sensor output
will swing between those two points.

The ADCMCTL0 register is used for configuring those two references, and its table tells
us to use the mask ADCSREFx. Once again, we need the proper suffix to replace x. The
header file, along with the register table, tells us that the mask ADCSREF_1 can be used
for simultaneously selecting VSS for VR- and VREF for VR+. Therefore, as shown
by line 13, we use ADCSREF_1 to set the proper bits in ADCMCTL0.

The last two instructions will

.

Setup the Digital I/O as the Output Signal Peripheral Module. The last mod-
ule to be configured is the digital I/O. It will be used for creating two channels where
output signals will flow across to drive the LEDs. Both channels will be in port 1.
Channel 0 will drive LED1, while channel 1 will drive LED2.

On line 18, channel 0 (BIT0) of the port 1 direction register (P1DIR) is set to the signal
output direction. On the following line, channel 1 (BIT1) of the same register is also
set to the output direction. Notice that we use the standard bits as masks.

On line 20 is yet another unlocking instruction. Current generations of MSP430
microcontrollers must have their port channels turned on before use. This is the typi-
cal instruction used for unlocking the channels.

Declare Variables and Constants. The block of repetitive instructions will need a
couple of variables and a constant.

T. N. Krnich 171

The first instruction, on line 23, declares the variable as storing integer data.
Integers are expressed with sixteen bit binary numbers. The 10-bit measurements,
which are written into the ADC conversion memory register, will be copied into this
variable.

The second instruction, on line 24, uses a pointer operation for reading a number
from an address in main memory and assigns it to a constant named That
address does not have a register variable for it. The data at that address is a sixteen bit
number that will be needed when the program converts the measurement from milli-
volts to degrees Celsius.

To write the instruction shown on line 24, we depend on knowing about the ADC
Calibration Transfer Function, the ADC Device Descriptors, and a pointer operation.
The following paragraphs will cover those concepts.

A transfer function, in the form of a linear equation, will be used for

One number adjusts the calculation for measurements at the lower end of the mea-
surement range, and the other is applied to the upper end of the range. The lower
adjustment applies to measurements around 30ºC, while the upper applies to mea-
surements around 85ºC.

The microcontroller's data sheet publishes a table showing the addresses to those
adjustments. That table is called the Device Descriptors table, and it categorizes those
adjustments as ADC Calibration device descriptors. A device descriptor is one or
more bytes of data that provides information about a specific microcontroller charac-
teristic. There are many descriptors, but we are only interested in those used for
adjusting ADC measurements. Those two descriptors are called the ADC 1.5 Refer-
ence Temperature descriptors. That section of the table is shown by diagram 51.
There is an adjustment for handling measurements around 30ºC, and there is one for
handling measurements around 80ºC. We're interested in the 30ºC adjustment.

Diagram 51: The ADC calibration section of the microcontroller’s device description table. It is published
by the microcontroller’s data sheet.

There are two addresses for the 30 degree constant, but the data sheet does not say
which address to use. Both addresses are needed. Here is the rational. The ADC con-
verts its measurements into ten bit numbers. Since the measurement will never be

ADC Calibration

ADC calibration tag 1A14h Per unit
ADC calibration length 1A15h Per unit

ADC gain factor
1A16h Per unit
1A17h Per unit

ADC offset
1A18h Per unit
1A19h Per unit

ADC 1.5-V reference temperature 30°C
1A1Ah Per unit
1A1Bh Per unit

ADC 1.5-V reference temperature 85°C
1A1Ch Per unit
1A1Dh Per unit

172 Repetitive-Driven Programming Examples

wider than ten bits, the constant which adjusts the measurement will be ten bits wide
or narrower. And since each address in memory is eight bits wide, two addresses are
needed for storing the largest constant, which will be ten bits wide.

Let's now go back to the instruction on line 24. It

. This pointer operation is explained by
code example 16 on page 83.

Now for the last variable, the transfer function converts the reading from
. That variable is used

for making a decision on line 35. Therefore, on line 25, that variable is declared as a
floating point number named Temp. We use that type of data because the result will be
expressed in decimal fractions. For example, the result might be calculated to 20.25,
and that is of course in degrees Celsius.

Block of Repetitive Selection Instructions

The repetitive block of instructions occupies lines 28 through 43. It reads the raw
temperature sensor output in millivolts, converts millivolts to Celsius, and then uses
the result to make a decision about which LED to illuminate. This entire block is con-
tained within a while() iteration statement. Its condition expression is just simply
the number 1, which always evaluates to a Boolean value of true. Therefore, it creates
an infinite loop.

On line 29 is the first instruction in this pattern. It sets a bit in the ADC Start Conver-
sion bitfield to start the sample-
measurement period. On line 31 that bitfield is cleared to stop that period. In other
words, when ADCSC is set, a sample is held and measured. When ADCSC is cleared, the
sample-measurement process is stopped.

That one cycle, from low to high and then back to low, is called a sample and mea-
surement period, or just simply the sampling period. Directly after the sampling
period, the ADC automatically enters the conversion cycle.

Following those start and stop instructions are delays which allows the ADC enough
time to carry out the sample-measure and then conversion processes. Here is how we
calculate those delays.

Let's start with the first delay shown on line 30. It is used for allowing the ADC
enough time for measuring the sample. The measurement is carried out by a tech-
nique called successive approximation register (SAR). It is basically a trial and error
measuring technique that converges upon the measurement after a few ADC clock
cycles. To calculate the number of clock cycles needed for a proper delay, we need to
take into account the number of cycles the sampling period needs, whether the sensor

T. N. Krnich 173

may create an addition delay, which clock signal is driving the ADC, and whether
any ADC dividing circuits are slowing down the clock signal.

The ADC “Sample and Conversion Timing” section of the user guide says that when
the ADC is in 10-bit conversion mode, it needs 4 ADC clock cycles to sample and
measure an ADC input signal. A later section, about “Using the Integrated Tempera-
ture Sensor,” says that when sampling and measuring the sensor output, the sampling
period must be greater than 30 microseconds (µs). Diagram 49, on page 163, shows
the clock signal going into the back of the ADC core. At power-up or reset, the ADC
is configured to be driven by the Module Oscillator (MODOSC), and the signal is not
divided anywhere to slow it down.

Here's where that 1 MHz comes from. During power-up or a reset, the reset system
selects the digitally controlled oscillator (DCO) as the clock system module's timing
source signal and adjusts it to produce a 1 MHz signal. That signal is then placed onto
the master clock signal bus (MCLK). The CPU is connected to that bus, so it executes
the program at that same frequency. Which means the __delay_cycles() intrinsic
function will run at that speed.

The calculation for converting the 4 ADC clock cycles (needed for a conventional
sampling period) to master clock cycles (MCLK) is shown by calculation 1. It uses
the conversion factors 5 MHz for the ADC clock speed and 1 MHz for the master
clock speed.

Calculation 1: For the conventional sampling period, this converts the 4 ADC cycles running at 5 MHz to
master clock cycles (MCLK) running at 1 MHz.

(1)

The calculation for converting the additional 30 µs (needed for sampling the temper-
ature sensor output) to master clock cycles is shown by calculation 2. It uses the con-
version factors of 1 Hz for the 30 µs delay and 1 MHz for the master clock speed.

Calculation 2: For the extra delay needed for sampling the temperature sensor output, this converts the
additional 30 μs to master clock cycles (MCLK) running at 1 MHz.

(2)

4ADC cycles 1second
5000000ADC cycles
-- 1000000MCLK cycles

1second
--- 0.8MCLK cycles=××

30μs 1second
1000000μs
--------------------------- 1000000MCLK cycles

1second
--- 30MCLK cycles=××

174 Repetitive-Driven Programming Examples

Now we sum together the results of calculations 1 and 2 to get 30.8 MCLK cycles,
and then round it up to 31. This is the total delay needed for the sampling period that
is inserted into the delay function, as shown on line 30.

Now we calculate the

.

The calculation for converting 13 ADC cycles, needed for converting the measure-
ment into a 10-bit binary number, to master clock cycles is shown by calculation 3. It
uses the conversion factors 5 MHz for the ADC clock speed and 1 MHz for the mas-
ter clock speed.

Calculation 3: For converting the measurement into a 10-bit binary number, this converts the needed 13
ADC clock cycles running at 5 MHz to master clock cycles (MCLK) running at 1 MHz.

(3)

On line 33 an instruction just simply reads the contents of the ADC memory conver-
sion register (ADCMEM0) and assigns it to the storage variable Voltage. This instruc-
tion quite literally represents the input signal to our program.

On line 34 is the transfer function that converts the measured voltage sample to
degrees Celsius. It's just simply a linear equation in slope-intercept form (y=mx+b),
where m is the slope, x is the measurement minus the adjustment, and b is 30. The
details about this function are typically published in the “Temperature Sensor Cali-
bration” section of the user guide. The slope is calculated by using the two ADC cal-
ibration descriptors: the ADC voltage references at 30ºC and 85ºC. For our
microcontroller the slope is calculated to be 0.3929.

After the LEDs have been driven to their proper states, the flow of program execution
goes back to the beginning of the loop, at line 28, and then executes the sequence
again.

The return instruction on line 44, of code example 33, on page page 169, is never
reached.

13ADC cycles 1second
5000000ADC cycles
--× 1000000MCLK cycles

1second
---× 2.6MCLK cycles=

Chapter 22

Event-Driven Programming Routines and Practices

The MSP430 is meant to run event-driven programs. Such programs share common
instructions, routines, and practices. This chapter presents and explains them.

Code Composer Studio (CCS) was used for writing the programming examples. They
are generic enough to be used as instructions for any MSP430 with little or no
changes. And they are presented in an order which they might appear in a program.
To simplify the microcontroller’s environment, it is assumed to be built into a devel-
opment kit, like a Texas Instruments MSP430 LaunchPad.

Boot Initialization

Two MSP430 intrinsic functions are available for modifying the boot program. One
will be executed early in the boot, while the other will be executed later in the boot.

Pre-Initialization

This function is an MSP430 translation unit (explained on page 143), so it is placed
outside of and before the main() function.

Use the pre-initialization boot function for executing one or more instructions during
boot-up and before global variables are initialized. For more information about the
context of this function, see “Execute a Pre-Initialization Function” on page 141 and
“Define a Pre-initialization Boot Hook Function” on page 147.

Code Example 34: Format and syntax for the pre-initialization function.

1
2
3 // To not execute this function, return 0
4 } // End of function

Post Initialization

Like the previous function, this is also an MSP430 translation unit, so it is placed out-
side of and before the main() function.

Use the post initialization function for executing instructions after
 . For

more information about the context of this function see “Execute a Post Initialization

176 Event-Driven Programming Routines and Practices

Function” on page 142 and “Define a Post initialization Boot Hook Function” on
page 147.

The header for this function is declared as void of any return value, and it is void of
any input parameters. Line 2 is where you can place one or more instructions. If writ-
ten in your program, this function will always be executed.

Code Example 35: Format and syntax for the post initialization function.

1){
2 */
3 } // end of function

Manipulating Bits in Password Protected Registers

A password protected register is typically a sixteen bit register that has its upper
address or upper eight bits dedicated to a password. The password is just simply a bit-
field mask that represents a specific pattern of eight bits. Although the password
mask varies from one register to another, it typically represents the byte 0xA5.

There are basically two types of protected registers.
.

Password that Protects a Single Register

This is how such a password works. Any change to the lower byte of the register
must be done by taking into account which fields must be cleared and which must be
set and then forming a byte that implements that pattern. That byte is then added to
the password to form a single sixteen bit word, and that word is then written into the
register. The watchdog register is designed to be used in that way.

To write such an instruction, the password mask and the fields which we want to
clear and set are

In the following example, an imaginary mask for the password is denoted as PASS-
WORD, the standard bits are used as masks for the remaining fields in the register, and
an imaginary variable for the entire sixteen bit register is denoted as REGISTER. Fields
7, 5, 3, and 1 of the lower register will be set, while fields 6, 4, 2, and 0 will be
cleared with this example. For an explanation about the standard bits, see page 47.

Code Example 36: Password that protects a single register.
.

;

Be aware that the password must be sixteen bits, meaning, the upper eight bits are the

T. N. Krnich 177

password and the lower eight bits are zeros. So if the password is 0xA5, then we must
convert it to sixteen bits by appending eight more zero bits to it. For example.
0xA500.

Password that Protects a Set of Registers

This password works very much like the first type, except it is used for unlocking a
set of registers. After those unlocked registers have been configured as needed, the
password is used for locking them again.

The password is written into the upper eight bits of a sixteen bit register, and the
lower eight bits must be taken into account. Just like how the protection of a single
register is used. Such an instruction unlocks a set of registers. The set typically
belongs to a single module; for example, the power management module (PMM) and
the clock system (CS) module.

Relocking the set of registers uses a different instruction.

This topic was introduced earlier on page 54, and it will be elaborated upon now. The
byte mode method involves a sixteen bit register which has a sixteen bit register vari-
able, but it also has two eight bit register variables. One variable is for the upper eight
bits, and the other is for the lower eight bits.

Diagram 52: As published by a microcontroller’s user guide, a power management module (PMM) regis-
ter and a portion of the PMM Registers table. The later is placed in front of all the register tables.

Shown above, as published by a microcontroller's user guide, is a power management
module (PMM) register and a portion of the PMM Register table. Such a table is
always published at the back of a module’s chapter, but precedes all the module’s reg-
isters. We see that the PMM password (PMMPW) is located in the upper eight bits of
PMM Control 0 (PMMCTL0) register. And we see that the register table shows the mask

Offset Acronym Register Name Type Access Reset Section
00h PMMCTL0 PMM control register 0 Read/write Word 9640h Section 2.3.1

00h PMMCTL0_L Read/write Byte 40h
01h PMMCTL0_H Read/write Byte 96h

02h PMMCTL1 PMM control register 1 Read/write(1) Word 9600h Section 2.3.2
02h PMMCTL1_L Read(1) Byte 00h

15 14 13 12 11 10 9 8
PMMPW

rw-1 rw-0 rw-0 rw-1 rw-0 rw-1 rw-1 rw-0

7 6 5 4 3 2 1 0
Reserved SVSHE Reserved PMMREGOFF PMMSWPOR PMMSWBOR Reserved

rw-[0] rw-[1] r0 rw-[0] rw-(0) rw-[0] r0 r0

PMMCTL0 Register (offset = 00h) [reset = 9640h]

PMM Registers

178 Event-Driven Programming Routines and Practices

for those upper eight bits as PMMCTL0_H. The register variables and masks are listed in
the Acronym column.

The following code example shows how that register and its upper register mask is
used for unlocking the PMM registers and then relocking them.

Code Example 37: Password that Protects a Set of Registers.

1 ; // unlocking the PMM registers w. respect to SVSHE
2 ; // relocking the PMM registers

On line 2, an instruction relocks all the PMM registers. We cannot use the same
instruction as seen on line 1. That will not work. Byte mode, as directed by the user
guide, along with the wrong password, must be used. Therefore, we write an instruc-
tion that

.

Watchdog Timer Handlers

Two routines are presented here for handling the watchdog timer. The first just sim-
ply disables the watchdog, and the second routine sets up the watchdog into the
watchdog mode and provides an interval reset instruction. The register used for the
code examples are shown by the “Watchdog Control Register Table” on page 90.

Placing the Watchdog on Hold

The 16-bit password mask is denoted as WDTPW, the 8-bit mask for setting the hold bit-
field is denoted as WDTHOLD, and the 16-bit register variable is denoted as WDTCTL. A
single unary addition operation is used for creating a 16-bit word that is written
(assigned) into the register.

Code Example 38: Placing the watchdog timer on hold.

; // placing the watchdog timer on hold

Using Watchdog Mode

When the watchdog is placed into watchdog mode, it is used for handling CPU
crashes. A power-up or reset automatically puts it into watchdog mode.

T. N. Krnich 179

Diagram 53: Program design pattern for implementing a
watchdog timer.

The diagram to the right is an elaboration on
two parts of the event-driven pattern shown by
diagram 43 on page 128. One part is the
main() function, and the other part is the inter-
rupt service routine. Placed inside of this dia-
gram and highlighted is a set of watchdog
instructions. They conceptually show a basic
pattern for implementing the watchdog.

To develop the pattern, you need basic knowl-
edge about the counter interval, details about
the pattern, and code examples.

The Counter Interval

The entire pattern is visualized within the con-
text of the watchdog timer counter interval.
The length of the interval, which is in units of clock cycles, will control the place-
ment of the counter reset instruction. It clears the counter back to zero. An instruction
may be placed anywhere in the program that resets the counter and changes the inter-
val as needed.

Keep in mind that the main clock signal (MCLK) drives the

.

Now back to the interval. The length of the counter interval is based upon the number
of main clock cycles which are needed for executing a block of instructions. The
reset instruction is placed near the end of the block, just before the counter overflows.

The number of clock cycles which are needed to execute a block of instructions is
measured with the

When measuring an interval, we must know whether or not the

.

The Pattern

On line of diagram 53, the watchdog timer interval is set and the timer counter is
cleared to zero. The length of the interval must be long enough to go past the counter
reset instruction shown on line

main() Function
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

Interrupt Service Routine
15
16
17
18

180 Event-Driven Programming Routines and Practices

On line is a decision is made about whether or not a timer overflow had caused the
microcontroller to reset. If it did, a routine may be executed which carries out some
corrective action process. That routine may be used as a subroutine in the reset fault
handler, described by a later section. However, the action may not necessarily be cor-
rective. It can be in the form of an illuminated LED or message sent out of a commu-
nications peripheral module. Furthermore, one of the instructions in this routine
should be used for clearing the watchdog interrupt flag.

At the end of is an instruction that places the microcontroller into a low-pow-
ered operating mode where it waits to be interrupted. When an event interrupts the
CPU, the interrupt system loads the correlating interrupt service routine (ISR) into
the CPU so it can be executed. That ISR is shown on lines through

The first instruction in the ISR sets .
The interval is made long enough for the CPU to execute the entire block of ISR
instructions. The last line of instruction is at

, but that instruction is automati-
cally added to the end of the ISR by the MSP430 compiler.

The Code Examples

The examples are shown by code example 39 and 40. The first example instructs the
CPU to clear the counter, set an interval, and handle a reset caused by a counter over-
flow. The second example instructs the CPU to just simply clear the counter. The line
numbers which appear in the code examples directly correlate with those in diagram
53 on page 179.

The watchdog register which is used for the programming examples has its table
shown by diagram 35 on page 91, but the register descriptions are not shown. The
register’s variable name is the Watchdog Timer Control register (WDTCTL).

Diagram 54: This watchdog register is used for the following code examples.

Code Example 39: Setting the interval, clearing the counter, and checking the watchdog
timer interrupt flag. Line 2 sets a watchdog timer interval and clears the counter to zero,
while line 3 is the fault handling routine. It checks for a counter overflow. If one has occurred,
the following block handles it. The IFG1 register is shown by diagram 55.

2 ; // Set interval & clear the counter
3 // If WDTIFG is set, then
 // execute corrective action

The instruction on line simultaneously sets an interval and clears the counter. The
two fields which configure the interval are shown by the mask WDTISx. A search in
the header file for this microcontroller shows that a single mask does not exist for

WDTHOLD WDTNMIES WDTNMI WDTTMSEL WDTCNTCL WDTSSEL WDTISx
7 6 5 4 3 2 1 0

rw-(0) rw-(0) rw-(0) rw-(0) r0(w) rw-(0) rw-(0) rw-(0)

WDTPW
15 14 13 12 11 10 9 8

WDTCTL, Watchdog Timer+ Register

(Read as 069h. Must be written as 05Ah)

T. N. Krnich 181

both fields. In this case, it has two masks. One mask is for field 0, and the other is for
field 1. They are and respectively. Publishing a single mask for a cou-
ple of fields, but providing two masks for actually doing the job is atypical for a
microcontroller's header file. A single mask with a distinguishing suffix is typically
supplied for multi-field masks. So just be aware of that.

After some analysis and choices provided by the register’s table, we have determined
that the interval shall be clock cycles. Since the microcontroller will be auto-
matically configured to the default clock speed of , that interval equals to

ms (MHz / cycles).

As shown by the watchdog register's table (page 91), to configure the watchdog timer
interval select bitfields (WDTISx), field 0 must be set and field 1 must remain cleared.
Therefore, mask WDTIS0 will be used for setting that field, and WDTCNTL will be used
for setting a bit in field 3 that will also clear the counter to zero. The instruction is
constructed as described by “Manipulating Bits in Password Protected Registers” on
page 176. We add WDTIS1, WDTCNTCL, and the password WDTPW together, and then we
assign (write) that sum to the register variable WDTCTL, as shown by line 2 of the code
example.

 .

If the state of the flag is zero, the reset was not caused by a counter overflow, and the
block of corrective action instructions are by-passed. If the state is 1, the block of cor-
rective action is executed.

Diagram 55: The Interrupt Flag 1 register (IFG1), where, in this case, the watchdog timer interrupt flag is
located.

.

As said earlier, the corrective action taken depends on the expected behavior of your
program and what you think must be done. It can be as simple as illuminating an
LED or sending a message out a communication peripheral module, or just clearing

IFG1, Interrupt Flag Register 1
7 6 5 4 3 2 1 0

NMIIFG WDTIFG

rw-0 rw-(0)

Bits 7-5 These bits may be used by other modules. See device-specific data sheet.

NMIIFG Bit 4 NMI interrupt flag. NMIIFG must be reset by software. Because other bits in IFG1 may be used for other
modules, it is recommended to clear NMIIFG by using BIS.B or BIC.B instructions, rather than MOV.B or
CLR.B instructions.

0 No interrupt pending

1 Interrupt pending

Bits 3-1 These bits may be used by other modules. See device-specific data sheet.

WDTIFG Bit 0 Watchdog timer+ interrupt flag. In watchdog mode, WDTIFG remains set until reset by software. In interval
mode, WDTIFG is reset automatically by servicing the interrupt, or can be reset by software. Because other
bits in IFG1 may be used for other modules, it is recommended to clear WDTIFG by using BIS.B or BIC.B
instructions, rather than MOV.B or CLR.B instructions.

0 No interrupt pending

1 Interrupt pending

182 Event-Driven Programming Routines and Practices

the flag. If a corrective action routine is executed, you must take into account the
number of clock cycles it consumes and factor that into the counter interval selected
on line 2. The routine must also clear the watchdog timer interrupt flag (WDTIFG). An
instruction that changes the interval and clears the counter might also be needed
within this corrective action block.

One line 13 of main(), shown on page 179, is an instruction which just simply resets
the counter back to zero before the microcontroller is put into a low-powered operat-
ing mode.

Code Example 40: Resetting the watchdog timer counter to zero.

13 ; // Clear the counter

The remaining two lines of the watchdog pattern are located inside of an interrupt
service routine (ISR). On line 15 the counter is cleared and the interval is reset to a
length which is appropriate for the routine. On line 17 the counter is cleared before
the flow of execution exits the ISR an put back into the operating mode from where it
was interrupted.

Oscillator Settling Handler

An external oscillator, such as a watch crystal, can be connected to the MSP430 and
used for driving the clock signal. This is desired when a higher quality and more sta-
ble signal is needed for driving a real-time clock (RTC) module or possibly for data
conversion work.

Most, if not all, oscillators will need some time to stabilize before producing a high
quality signal. And that is of a concern during a power-up event. The MSP430 will
not properly operate on an unstable signal, so it has a block of logic for measuring the
quality of an externally produced signal. That logic will set an oscillator fault flag
when poor signals are detected.

We use an oscillator settling handler for creating a delay in the flow of program exe-
cution so an externally connected oscillator can have enough time to settle.

Here's how it works.

.

.

T. N. Krnich 183

Signal Path from an External Oscillator to the Fault Detector

The path from an oscillator to the fault detection logic will typically involve three
sections. Shown by diagram 56 is that path. We're dealing with a low frequency
external oscillator (LFXT), so the path will flow along circuits which are dedicated to
that type of signal.

Diagram 56: Typical Path for external oscillator fault signal detection.

The first section is the interface circuit. That circuit, shown by section A, is part of a
schematic typically published by a development kit's user guide. It shows the oscilla-
tor terminals connected to pin numbers 84 and 85, along with the signal names and
the port channels. In this case, they are channels 4 and 5 of port J (PJ.4 and PJ.5).

The second section of the path, labeled as B, is the signal going into the back end of
the clock module. This section is part of the block diagram for a clock module, which
is published by the microcontroller's user guide.

Notice the loop in the circuit. It accommodates the voltage swings of the
oscillator, which is typically from 0.1 to 4.9 volts.

The first bitfield in section B is labeled as and it is a two bit field. When
we search the user guide for this field, it says that it is used for amplifying the oscilla-
tor driving current. Lower frequencies need lower amounts of current while higher
frequencies need more, and the user guide tells us about our choices. The second bit-
field is called LFXTBYPASS, and it controls the signal by-pass multiplexer. If the signal
comes from an oscillator in the form of a crystal, then it must be cleared to zero so the
signal can flow through the amplifiers. If the external signal is from a device which is

B: LFXT Clock Module Input

C: Oscillator Fault Signaling Logic

A: LFXT Interface Circuit

PJ.4/LFXIN 84
PJ.5/LFXOUT 85

Fault
Detection

LFXIN

LFXOUT

LFXTBYPASS

1

0

LFXTDRIVE

2

LFXTCLK

Set

Reset

Q

Set
Q

Q

Set

Reset
PUC

NMI _ IRQA

OFIFG

OFIE

NMI

Set

Reset

Q
LFXTOFFG

HFXTOFFG

POR

HFXT_OscFault

OscFault_Clr

OscFault_Set

Q

Q

LFXT_OscFault

184 Event-Driven Programming Routines and Practices

producing a conventional clock signal, the field is set so the signal can pass around
the amplifiers. Within the context of the settling handler, neither one of these bitfields
are a concern to us.

Once the signal exits the multiplexer,

Upon entering section C, a fault signal drives a flip-flop to set the low frequency
external oscillator fault flag (LFXTOFFG). The outputs of a flip-flop are denoted with
letters Q and Q, where one is a complement of the other; meaning, when one output is
set the other is cleared and vice versa. The signal then

.

In the context of the fault handler, we are interested in the LFXTOFFG and OFIFG bit-
fields. LFXTOFFG will be used for making a decision that results in the flow of execu-
tion remaining in our fault handler or not, while the body of the routine will clear
both flags.

Code Example for the Oscillator Fault Handler

The handler is placed inside the system configuration block of instructions of the
main() function, and before the clock system is configured. As shown by the follow-
ing code example, lines 5 through 8 form the handler itself. The preceding instruc-
tions prepare the microcontroller for the handler.

Code Example 41: The oscillator fault handler.
.

1 4; // Set PJ.4 to LFXIN function
2 ; // Set PJ.5 to LFXOUT function
3 ; // Clear to unlock the port channels
4 ; // Set to unlock CS registers
5 { // While LFXTOFFG is 1, then enter loop
6
7 ; // Clear the OFIFG fault flag
8 } // End of while() loop

At lines 1 and 2 the port channels are configured to use the external low frequency
oscillator (LFXT). These channels interconnect the signals from the oscillator to the
fault detection logic. So they need to be setup before the handler is executed.

Diagram 56, on page 183, shows the signal path from the oscillator to the fault sig-
naling logic, but it does not show the paths through channels 4 and 5 in port J. We

T. N. Krnich 185

need to know which channel bitfields must be configured for creating the path
through the port.

Earlier in this book, port pin diagrams were used for learning which bitfields are
involved in setting up the channel through a port. This time, a port pin functions
table, as published by the microcontroller's data sheet, will be used for learning
which bitfields are involved. Diagram 57 shows the table we need.

Diagram 57: The pin functions table for channels 4 and 5 of Port J (PJ.4 and PJ.5) as published by our
microcontoller’s data sheet.

The first column at the left shows the pin names (PJ.x), and the second column shows
the port channel number (x). The third column shows the functions supplied to the
pins. We are interested in the LFXIN and LFXOUT functions in crystal mode. By-
pass mode is used when a conventional clock signal is supplied to those channels.
Under the heading Control Bits and Signals are all the register variables which con-
figure these two channels. They include the .x suffix to denote the channel number, in
other words, it is the register bitfield number. But unfortunately, some of the suffixes
actually denote the specific channel number, which is misleading. Lastly, registers
which are marked with an X are no concern to us.

Not shown by the table are the initial states of

For the LFXIN function in crystal mode, the table shows that bitfield 4 must be set in
the Port J Select 0 register (PJSEL0). Field 4 configures channel 4. Therefore, on line
1 of the code example, the instruction sets a bit in field 4 of PJSEL0.

For the LFXOUT function, the table incorrectly shows that bitfield 4 must be set in
PJSEL0. It is bitfield 5 that must be set. Field 5 configures channel 5. Therefore, on
line 2 of the code example, the instruction sets a bit in field 5 of PJSEL0.

(1) X = Don't care
(2) Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When LFXTBYPASS = 0, PJ.4 and PJ.5 are

configured for crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When LFXTBYPASS = 1, PJ.4 is configured for bypass
operation and PJ.5 is configured as general-purpose I/O.

(3) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.
(4) With PJSEL0.5 = 1 or PJSEL1.5 =1 the general-purpose I/O functionality is disabled. No input function is available. When configured as

output, the pin is actively pulled to zero.

Port PJ (PJ.4 and PJ.5) Pin Functions

PIN NAME (PJ.x) x FUNCTION
CONTROL BITS AND SIGNALS (1)

PJDIR.x PJSEL1.5 PJSEL0.5 PJSEL1.4 PJSEL0.4 LFXT
BYPASS

PJ.4/LFXIN 4

PJ.4 (I/O) I: 0; O: 1 X X 0 0 X
N/A 0

X X 1 X X
Internally tied to DVSS 1
LFXIN crystal mode (2) X X X 0 1 0
LFXIN bypass mode (2) X X X 0 1 1

PJ.5/LFXOUT 5

PJ.5 (I/O) I: 0; O: 1 0 0
0 0

0
1 X
X X 1(3)

N/A 0 see(4) see(4)
0 0

0
1 X
X X 1(3)

Internally tied to DVSS 1 see(4) see(4)
0 0

0
1 X
X X 1(3)

LFXOUT crystal mode (2) X X X 0 1 0

186 Event-Driven Programming Routines and Practices

Before signals can flow through any port channel, they must be unlocked. Therefore,
on line an instruction uses the password mask for clearing bits in

 to unlock the channels.

On line 4 is another unlocking instruction.

Starting at line and ending at line is the oscillator fault handler. It's a loop in the
form of a while() repetition statement.

 If the expression returns 0b0,

that evaluates to false, but if it returns 0b1000, that also evaluates to false.

For our microcontroller, LFXTOFFG is a single bitfield in the Clock System Control 5
register (CSCTL5). Its initial state is 1, and it remains at that value until the oscillator
settles or an instruction clears it to zero. The condition CSCTL5 & LFXTOFFG just sim-
ply reads that flag.

At line the flag is cleared. If the oscillator has not settled, the fault detec-
tion logic automatically sets the flag back to 1. At line 7,

.

The OFIE bit must remain cleared at this point in the flow of program execution.
Meaning, this oscillator fault handler must be executed before any instructions begin
to configure the clock system. Here’s why. A well configured clock system will have
this bit set so oscillator faults which occur after a power-up can be handled by a ded-
icated interrupt service routine (ISR). This oscillator fault handler is not meant to
cause an ISR. It is mean to allow the external oscillator to have enough time to ramp-
up in order to produce a stable signal.

Be aware that the clock system will automatically use a built-in oscillator if the exter-
nal oscillator is not producing a good signal.

T. N. Krnich 187

Configuring a Port Channel

The signaling pathways into and out of a microcontroller are concentrated onto the
port channels. Although some pathways, which are typically limited to reset signals,
program loading, and program debugging signals do not go through port channels,
practically all signaling paths are carried through port channels. Each channel will
typically have its own dedicated pin on the microcontroller's case.

Most channels provide more than one service.

A single channel provides one separate path for handing input signals and another
separate path for handling output signals. The diagram for a port channel is published
by the microcontroller's data sheet; it is referred to as a Port Input/Output Diagram.
An example is shown by diagram 58. At the lower right hand corner of the diagram is
a list which outlines all the services which the channel can provide. The data sheet
also publishes a table of pin functions (diagram 59), typically on the page following
the diagram. It shows which registers and bits are used for selecting a function.

A port channel is typically put into one of four different configurations.

.

Nine different registers are typically used for configuring a port channel into the
GPIO, non-GPIO, or unused function. And those register configurations use a com-
mon set of programming instructions. Those instructions are presented by this sec-
tion. Once those registers have been used to configure the channel into a GPIO or
unused function, the channel is then ready for work. But if the channel is configured
to a non-GPIO function, then you will probably have to go the peripheral's registers
and then configure them as needed.

The code examples in this section have comments which include the register's bitfield
accessibility and the initial condition after a power-up or reset event. Most bitfields in
the examples will be denoted as rw, which means our program has permission to read

188 Event-Driven Programming Routines and Practices

or write bits into the bitfield. The accessibility will typically be followed by the initial
condition -0 or -undefined. The -0 means the field is initialized to zero by the PUC
reset system, and -undefined means a reset subsystem does not initialize the bitfield,
and that the field will hold its state through a reset event. These and all the other nota-
tions are defined and published by the preface of the microcontroller's user guide.
They are also used as label under each bitfield in a register diagram. The undefined
notation (-undefined) is my own notation. A hypothetical register diagram is shown
by diagram 15 on page 61.

Diagram 58: Port 1 Input/Output diagram for an MSP430FR2433, as published by its data sheet.

An important register that is not shown in the code examples is the Port x Input regis-
ter (PxIN).

. Undefined means it is not initialized and typically holds
its state through a reset event.

You'll notice that all the code examples will include instructions which just simply
clear a bit in a field which was already initialized to zero by a PUC. The rationale
behind this action is improved reliability. The environment which the microcontroller

Q

0

1

D
S

Edge
SelectP1IES.x

P1IFG.x

P1 Interrupt

P1IE.x

P1IN.x

To module

P1SEL.x

From Module1
P1OUT.x

P1DIR.x

From SYS (ADCPCTLx)

A0..A7

11

From Module1

DVCC

DVSS

P1REN.x

EN

D

Bus
Keeper

From JTAG

To JTAG

P1.0/UCB0STE/TA0CLK/A0/Veref+
P1.1/UCB0CLK/TA0.1/A1
P1.2/UCB0SIMO/UCB0SDA/TA0.2/A2/Veref-
P1.3/UCB0SOMI/UCB0SCL/MCLK/A3
P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+
P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A5
P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A6
P1.7/UCA0STE/SMCLK/TDO/A7

2 bit

2 bit

10
01
00

11
10
01
00

From Module2
DVSS

Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger

Buffer
Activated, 1b

1
1
0

GND

Supply Voltage

Output Buffer

Input to one of the ADC channels.

Schmitt Triggered
Input Buffer

Pin
Channel Function Mulitplexer

Common Control Block

T. N. Krnich 189

is operating within may produce strong electromagnetic noises which on the rare
occasion may edit the bit, so even though the reset initializes the bitfield, the program
code assures it remains that way before use. If the use case is for a toy which just sim-
ply flashes an LED, you probably can avoid the extra initialization.

Diagram 59: Port 1 Pin Functions table for an MSP430FR2433, as published by its data sheet. It is typically
located on the page after the port input/output diagram.

When configuring the channel for the GPIO function, be aware that

. So when you clear the field to zero
to produce a logical low signal out the channel, the channel's logic automatically con-
nects DVSS (ground) to one end of the resistor, but the other end of resistor will not
be connected to the channel. It's connected by setting a bit in the Port x Resister
Enable register (PxREN). In this case it acts as a pull-down resistor; the resistor will
be pulling the voltage level in the channel to DVSS in order to prevent the voltage

(1) X = don't care
(2) Setting the ADCPCTLx bit in SYSCFG2 register disables both the output driver and input Schmitt trigger to prevent leakage when

analog signals are applied.

Port P1 (P1.0 to P1.7) Pin Functions

PIN NAME (P1.x) x FUNCTION
CONTROL BITS AND SIGNALS(1)

P1DIR.x P1SELx ADCPCTLx(2) JTAG

P1.0/UCB0STE/
TA0CLK/A0 0

P1.0 (I/O) I: 0; O: 1 00 0 N/A
UCB0STE X 01 0 N/A
TA0CLK 0 10 0 N/A
A0/Veref+ X X 1 (x = 0) N/A

P1.1/UCB0CLK/TA0.1/
A1 1

P1.1 (I/O) I: 0; O: 1 00 0 N/A
UCB0CLK X 01 0 N/A
TA0.CCI1A 0

10 0 N/A
TA0.1 1
A1 X X 1 (x = 1) N/A

P1.2/UCB0SIMO/
UCB0SDA/TA0.2/A2 2

P1.2 (I/O) I: 0; O: 1 00 0 N/A
UCB0SIMO/UCB0SDA X 01 0 N/A
TA0.CCI2A 0

10 0 N/A
TA0.2 1
A2/Veref- X X 1 (x = 2) N/A

P1.3/UCB0SOMI/
UCB0SCL/MCLK/A3 3

P1.3 (I/O) I: 0; O: 1 00 0 N/A
UCB0SOMI/UCB0SCL X 01 0 N/A
MCLK 1 10 0 N/A
A3 X X 1 (x = 3) N/A

P1.4/UCA0TXD/
UCA0SIMO/TA1.2/TCK/
A4 /VREF+

4

P1.4 (I/O) I: 0; O: 1 00 0 Disabled
UCA0TXD/UCA0SIMO X 01 0 Disabled
TA1.CCI2A 0

10 0 Disabled
TA1.2 1
A4, VREF+ X X 1 (x = 4) Disabled
JTAG TCK X X X TCK

P1.5/UCA0RXD/
UCA0SOMI/TA1.1/TMS/
A5

5

P1.5 (I/O) I: 0; O: 1 00 0 Disabled
UCA0RXD/UCA0SOMI X 01 0 Disabled
TA1.CCI1A 0

10 0 Disabled
TA1.1 1
A5 X X 1 (x = 5) Disabled
JTAG TMS X X X TMS

P1.6/UCA0CLK/
TA1CLK/TDI/TCLK/A6 6

P1.6 (I/O) I: 0; O: 1 00 0 Disabled
UCA0CLK X 01 Disabled
TA1CLK 0 10 0 Disabled
A6 X X 1 (x = 6) Disabled
JTAG TDI/TCLK X X X TDI/TCLK

P1.7/UCA0STE/SMCLK/
TDO/A7 7

P1.7 (I/O) I: 0; O: 1 00 0 Disabled
UCA0STE X 01 0 Disabled
SMCLK 1 10 0 Disabled
A7 X X 1 (x = 7) Disabled
JTAG TDO X X X TDO

190 Event-Driven Programming Routines and Practices

from floating away from that level. This is to assure that the microcontroller's operat-
ing environment does not have an electromagnetic affect on the channel's signal. On
the other hand, if the bitfield in PxOUT were set to produce a logical high, one end of
the resistor would be automatically connected to DVCC, so when the resistor is
enabled, its other end will be connected to the channel in order to keep the output sig-
nal from floating away from the logical high voltage level.

And finally, there is one matter which we should be aware about because the user
guides and data sheets are not explicate about it.

t

e.

A channel also has two other buffers. One is the signal output buffer, and that buffer
holds the output signal state through a reset. The other is a signal input buffer,
referred to as a Bus Keeper, and that buffer holds the output signal state through a
reset. This is the reason why PxIN and PxOUT are characterized with an initializa-
tion of undefined after a reset event.

The following subsections will present code examples that will configure Channel 0
of Port 1 on an MSP430FR2433, but the same code can be used on any other
MSP430 with very little or no changes.

To view the bitfields in these registers during operation, put Code Composer Studio
into debugging mode (press F11), and then from the View menu, select Register to
open the Registers window.

Configuring as a GPIO Input for Sensing a Signal Changing from Low to High

Use these instructions for configuring a port channel into a general purpose input or
output (GPIO) channel which senses input signals changing from low to high. In
other words, the channel will be configured as an input, then initialized to a logically
low voltage state (equal to DVSS), then configured to monitor for a voltage state

T. N. Krnich 191

which changes from low to high (close to or equal to DVCC), and then set a flag
when a change is sensed. The example will configure channel 0 of port 1 (P1.0).

Code Example 42: Negative Logic GPIO Input Function. Configuring a port channel to sense
an input signal which changes from

1 // rw-0. Clear P1SEL0.0 for GPIO function.
2 ; // rw-0. Clear P1SEL0.0 for GPIO function.
3 ; // rw-undefined. Clear P1OUT.0 to produce a low signal,
4 // which automatically connects DVSS with the built-in
5 // resistor to pull (hold) the signal low, then
6 0; // rw-0. set P1REN.0 to enable the resistor, and then
7 ; // rw-0. .
8 ; // r-undefined. Clear to set a flag on a rising signal edge.
9 ; // rw-0. Clear the flag before interrupts are enabled. The
10 // state of this flag will be held through a wake up from LPMx.5.
11 ; // rw-0. Set to enable channel 0 to request an

On lines 1 and 2 of code example 42, fields zero of function selection registers 0 and
1 (P1SEL0 and P1SEL1) are cleared to select the GPIO function for channel 0.
Although the registers were already initialized to zero by a PUC (rw-0), we do it
again for reliability.

On line 7, field zero in the Port 1 Direction register (P1DIR) is
. On line 8, field zero of the Port 1 Interrupt Edge

Select register (P1IES) is cleared so
. And then on line 9, field zero of the Port 1

Interrupt Flag register (P1IFG) is cleared to assure that an unintentional flag will not
trigger an interruption.

 we clear those bitfields again for reliability.

And finally on line we set field zero of the
 to request an interruption when a flag is set. But

since port channels are maskable interruptions, the request will not reach the interrupt
system until masked interruptions are enabled (see page 212).

Configuring as a GPIO Input for Sensing a Signal Changing from High to Low

Use these instructions for configuring a port channel into a GPIO channel which
senses input signals changing from high to low. In other words, the channel will be
configured as an input, then initialized to a logically high voltage state (equal to
DVCC), then configured to monitor for a voltage state which changes from high to

192 Event-Driven Programming Routines and Practices

low (DVSS), and then set a flag when a change is sensed. The example will configure
channel 0 of port 1 (P1.0).

Code Example 43: Positive Logic GPIO Input Function. Configuring a port channel to sense an
input signal which changes from a high to low logical state to set a flag which requests an
interruption.

).

1 // rw-0. Clear P1SEL0.0 for GPIO function.
2 // rw-0. Clear P1SEL0.0 for GPIO function.
3 //
4 // which automatically connects DVCC with the built-in
5 // resistor to pull (hold) the signal high, then
6 // rw-0. set P1REN.0 to enable the resistor, and then
7 //
8 // r-undefined. Set to set flag on a falling signal edge.
9 P // rw-0. Clear the flag before interrupts are enabled. The
10 // state of this flag will be held through a wake up from LPMx.5.
11 // rw-0. Set to enable channel 0 to request an interruption.

On lines 1 and 2 of code code example 43, fields zero of function selection registers 0
and 1 (P1SEL0 and P1SEL1) are cleared to select the GPIO function for channel 0.
Although the registers were already initialized to zero by a PUC (rw-0), we do it
again for reliability, and that will be done for other registers.

On line 3, field zero of the Port 1

.

On line 7, field zero in the Port 1 Direction register (P1DIR) is cleared to configure
the channel to use its input path. On line 8,

And finally on line 11 we set field zero of the Port 1 Interrupt Enable register (P1IE)
to give this channel the permission to request an interruption when a flag is set. Since
port channels are maskable interruptions, the request will not reach the interrupt sys-
tem until masked interruptions are enabled (see page 212).

Configuring a Channel as a Non-GPIO Function

Use these instructions for configuring a port channel to provide a function other than
the GPIO function.

Port channels are typically multi-functional. Meaning, they can provide more than
one type of functional service. Such channels have a built in multiplexer that can be
used for connecting the channel to a particular service provided by a peripheral mod-

T. N. Krnich 193

ule. But the channel's multiplexer cannot connect the channel to any module because
it has been designed and made to connect with only a specific subset of the microcon-
troller's peripheral modules.

Which functional services a channel may connect with is published by the microcon-
troller's data sheet. The port input/output diagram, published by the data sheet, is the
first place to go for getting that information. Typically at the lower right corner of the
diagram is a list which shows all the functions that each port channel can provide, as
shown by diagram 58 on page 188. And typically the page which follows the diagram
is a port pin functions table, as shown on page 189. It lists each port channel, the pin
which they are connected with, the functions they provide, and the register bitfields
which must be configured to select the function. Many of the signal names are in the
form of acronyms, and those names are described by a Signal Descriptions table, that
can be found earlier in the microcontroller’s data sheet.

Configuring a channel to serve as a non-GPIO function typically involves

Code example 44 shows how channel 0 of port 1 is configured for a non-GPIO func-
tion. The routine selects a

We begin by searching for information about configuring the channel function selec-
tion registers. So we open the microcontroller's data sheet, and then turn to the port 1
input/output diagram, as shown on page 188. Near the center of the diagram is the
channel function selection multiplexer. Below it is a square, labeled as P1SELx, that
represents the two fields in the channel function selection registers (P1SEL0 and
P1SEL1), which control the multiplexer. Two bits will control the multiplexer, one
from each register. And specifically in this case, bits from fields 0 of both registers.
Remember that each register bitfield corresponds with a channel, so bitfield 0 is for
channel 0.

At the lower right corner of the port input/output diagram is a list that itemizes every
channel in the port and the functions they provide, or more specifically, the function
signal names. At P1.0, we see signal name TA0CLK. Now when we go to the front of
the data sheet and search for TA0CLK in the Signal Descriptions table we will find it
described as the "Timer clock input TACLK for TA0." In other words, it is the input
signal for driving the Capture/Compare Timer Block 0 of Timer type A. If you open
the microcontroller's user guide, and go to the chapter about Timer A, you'll see a

194 Event-Driven Programming Routines and Practices

Timer A Block Diagram. And that diagram shows all the different clock signals
which can be used for driving a single block. TAxCLK is one of those signals, where
x denotes the block number. In this case, it is the TA0CLK input signal at P1.0.

Code Example 44: Non-GPIO Function. Channel 0 of port 1 is configured in an MSP430FR2433
to use an external clock signal to drive Timer Module A0.

1 0; // rw-0. Set channel 0 bitfield.
2 ; // rw-0. Clear channel 0 bitfield.
3 // Setting a bit in any P1SELx register typically disables
4 // the channel’s ability to request a CPU interuption.
5 ; // rw-undefined. Leave at any state.
6 ; // rw-0. Clear P1REN.0 to disable the built-in resistor.
7 ; // rw-0. Clear as specified by the Port Pin Functions table.
8 ; // e.
9 ; // rw-0. Clear the channel’s flag.
10 ; // rw-0. Clear to disable interruptions from channel 0.

We must be careful about interpreting a port input/output diagram, because not all
signaling goes through the channel function multiplexor. Only output signals go
through it. The signal output buffer, shown to the right and near the pin, provides a
clue that it is the output path for the port channel. On the other hand,

.
Remember that a GPIO input is just simply a bitfield in the P1IN register. The block
is located between the P1SEL.x and P1IN.x register bitfields. There are some other
input paths which provide signaling for interruptions and JTAG signals, but we're
ignoring those. That block handles the signaling going into the module which pro-
vides the non-GPIO service, in this case, Timer A. Therefore, the channel 0 bits from
the P1SEL0 and P1SEL1 registers will control the multiplexor and they can also
enable (EN) the common control block to direct an input signal to Timer A, which is
named TA0CLK, but not explicitly shown. It is just generically labeled as "To mod-
ule."

Now we go back to the microcontroller's data sheet and turn to the Port Pin Functions
table, which is typically located directly after the Port Input/Output diagram.

.

The remaining four columns of the Port Pin Functions table tell us which registers
and bitfield settings are used for configuring the channel to the function we want. The
fourth column, P1DIR.x, tells us which signaling direction to put the channel into. It
says a zero bit for our function, which is the input direction. The configuration for the
P1.0 (IO) function clues us in by showing that the input direction is zero (I:0), and 1

T. N. Krnich 195

is for the output direction (O:1). So in bitfield 0 of the port 1 direction register
(P1DIR), we'll have to clear that field to zero.

The fifth column, P1SEL.x, tells us how to configure the channel function selection
bits for registers P1SEL0 and P1SEL1. It shows the bits as 10, which means bitfield 0
of register P1SEL0 must be set to 1, and bitfield 0 of P1SEL1 must be cleared to zero.
Keeping in mind that bitfield zero of a port register correlates to channel 0. There-
fore, that will send bits 1 and 0 to the channel multiplexer so it will connect the input
to Capture/Compare Timer A Block 0 with Channel 0 of Port 1.

The sixth column is labeled as ADCPCTLx. Table note (2) tells us that it is a field in
the System Configuration 2 register (SYSCFG2). The x tells us that there are more
than one of those bitfields. So we open the microcontroller's user guide, and then
search for the register named SYSCFG2. Once we have found the table for that regis-
ter, we then learn that those are bitfields which control the signals going into an ana-
log to digital converter (ADC), and that each of those bitfields are read/write and
initialized to zero by a reset from PUC (rw-0). The port 1 Pin Functions table says
that each one of those bitfields must be cleared to zero, but since the PUC has already
done that for us, we don't have to write instructions to do that.

We have collected all the channel function selection configuration information we
need, so now let's step through code example 44 on page 189. We want to configure
channel 0 of port 1 as an input to the Timer A Block 0 Clock (TA0CLK) module so
we can feed it an external clock signal. So on line 1 we set field zero of P1SEL0, and
then on line 2 we clear field zero of P1SEL1 to connect channel 0 with the TAxCLK
input signal function. Just as shown by the P1 Pin Functions table.

It's worth our time to open the microcontroller's user guide, then turn to the Digital I/
O chapter, and then read the channel Function Select Registers section to learn about
any side effects which those settings produce. That section tells us that setting a bit in
any of those registers to select a non-GPIO function will disable the corresponding
port channel's interrupt ability. Meaning, the channel will not be able to request an
interruption if its interrupt flag is set, regardless of the state in which the channel 0 bit
of the Port 1 Interrupt Enable register (P1IE) is in. That's OK, and that's what we
want because that is a GPIO related function.

Now onto line 5, recall that the PxOUT register is used for producing output signals.
That is a GPIO function. But when we used the function selection registers to switch
the channel away from the GPIO function, that action had disconnected P1OUT from
the port channel. So channel 0 of the port 1 output register (P1OUT) can be left at any
state we desire. However, it might be a good idea to put an unused bitfield in the
PxOUT register into its lowest state of energy in order to mitigate any possible con-
sumption of energy. Therefore, on line 5, the output signal is cleared to zero.

Now onto line 6, recall that when the channel is configured as GPIO, the built-in pull-
ing resistor will be automatically connected to DVCC or DVSS, depending on the
state of channel 0 output (P1OUT.0). Back on line 5 we had cleared the output to
zero, which automatically connected the resistor to ground (DVSS). But we also want

196 Event-Driven Programming Routines and Practices

to assure that there is no influence coming from DVSS which could be placed onto
the channel's pin (as shown by the port input/output diagram on page 184). Therefore,
we cleared channel 0 of the port 1 resistor enable register (P1REN) to disconnect the
resistor from the channel.

On line 7 is an instruction which configures the signaling direction in the channel to
handle incoming or outgoing signals.

The remaining three port registers are all used for monitoring input signals which
could be used for producing a request for interrupt signal (IRQ). They are the Inter-
rupt Edge Select (PxIES), the Interrupt Flag (PxIFG), and the Interrupt Enable (PxIE)
registers. Except for some type of esoteric and sophisticated clock input signal diag-
nostic interrupt service routine (ISR), we're not going to use these input signals for
producing interruptions which will run an ISR. Therefore, we want to disable this
feature.

So on line 8, we clear channel 0 of the interrupt edge select register (PxIES), and on
line 9 we clear channel 0 of the interrupt flag register (PxIFG). We could have left
both of those registers as is, since on line 10 we're going to disable interruptions from
channel 0, but we clear them for good programming practice. Then on line 10, we
clear channel 0 of the interrupt enable register (PxIE) to disable interruptions from
channel 0. Although a PUC will automatically clear registers PxIFG and PxIE to
zero, as a good programming practice we assure they remain cleared.

So what have we learned about configuring a port channel to provide a non-GPIO
function? We need configuration information from the data sheet and from the Digi-
tal I/O chapter of the user guide, and we need to decide on whether or not the non-
GPIO signals will be used for producing interruptions. And finally, configuring the
port channel may just be the first step in using a non-GPIO function, we typically
then have to configure the registers belonging to the peripheral module which is sup-
plying the non-GPIO service.

T. N. Krnich 197

Configuring a Port Channel as Unused

This topic is covered by “Configuring Unused Port Channels” on page 198.

Accessing Protected Registers

Although the examples in previous sections have already shown how to use protected
registers, this section elaborates upon an earlier section called “Manipulating Bits in
Password Protected Registers” on page 176.

There are two types of protected registers. The first type is in the form of a built-in
password, typically at the higher eight bits of a sixteen bit register, which controls
access to the lower eight bits. The watchdog control register is built that way.

The second type is in the form of one or more bits in a register that controls access to
other registers. The bits do not typically control access to their own register. Those
other registers will belong to the same module, such as the CSKEY bits used for
unlocking clock system registers, or to other modules, such as the LOCKLPM5 bit that
controls signal flow across port channels.

Here are some commonly used instructions for accessing protected registers. The
actual register variable names may be slightly different with your microcontroller.

Watchdog Registers

The watchdog instructions are repeated here so they can be all seen together.

Code Example 45: Putting the watchdog on hold. It is put on hold during a scenario when it is
not needed, or so it will not interfere with code development. is the password mask,
and it must be used every time the register is written into.

; // Putting the watchdog on hold

The next example shows how the watchdog counter is cleared and an interval is set.
The first instruction configures the watchdog by

 the password mask, and it must be used every
time the register is written into.

Code Example 46: Clearing the counter and setting an interval.

1 // Set interval and clear the counter
2 W // Clear the counter

Power Management Module Registers

These registers are typically used for setting bits which will force a BOR, POR, or
PUC, enabling an internal temperature sensor, and choosing a reference voltage that
peripheral modules may use for making decisions. In this example, a password is
used for enabling the High-Side Supply Voltage Supervisor (SVSHE).

198 Event-Driven Programming Routines and Practices

Code Example 47: Unlocking the Power Management Module (PMM) registers.

.

; // Unlock the PPM registers

Clock System Registers

Some microcontrollers have their clock system registers locked after a power-up
event.

Code Example 48: Unlocking the clock system registers.

; // Unlock the clock system registers

Memory Protection Unit (MPU) Registers

The memory protection unit acts as a barrier to specific segments of main memory.
When enabled, it will not let the CPU write data into segments which store non-vola-
tile data, such as our program. It can be disabled so the program can be upgraded and
additional non-volatile data can be placed into those segments and be protected. It
does not stop the CPU from reading data in those protected segments.

Code Example 49: Unlocking the Memory Protection Unit (MPU) registers.

; // Unlock the MPU registers

Configuring Unused Port Channels

If a port channel will not be used, it must be configured to mitigate unwanted voltage
signals and current drains. Those signals are often referred to as uncontrolled volt-
ages or floating voltages and they may unintentionally cause an interrupt flag to be
set. As for the drains, they are also referred to as parasitic current drains and they
unintentionally consume power.

Every microcontroller's

. That
configuration puts the channel into a high impedance state, meaning, it blocks float-
ing voltages from entering the channel and mitigates drains.

But there can be additional measures which may not be mentioned. For example, we
may clear the channel output signal to zero, enable the channel's signal pull-up/pull-
down resistors, and if the comparator function is present, disable the comparator's
voltage buffer in the channel.

T. N. Krnich 199

To be thorough about this, go to the microcontroller's data sheet and inspect the port
channel diagrams to determine which functions may appear at each channel. And
then go to the user guide to read about the feature in order to determine if the guide
provides additional advice.

The points in the flow of program execution where we want to put unused channels
into a high impedance state are when system and peripheral modules are configured.
That point is located before unlocking the channels and certainly before maskable
interruptions are enabled, as shown by diagram 43, on page 128.

Diagram 60: A typical port 1 pin diagram as published by a microcontroller’s data sheet. Although it
shows a

).

Code Example for Putting a Port Channel into a High Impedance State

As a reference model, the code example will put channels 2 and 3 of a port into a high
impedance state. In this case, it is port 1, as shown by diagram 60. It is an image of a
typical port 1 pin diagram, as published by the microcontroller's data sheet.

All port channels provide the digital I/O function, but they also provide an additional
set of functions. Your particular channels may provide a different set of functions
than shown here. That only means its port pin diagram may be different from the one
seen here.

The basic strategy for putting one or more channels into a high impedance state can
be outlined like this. Determine which port channel pins will not be used. Open the

P1.0/TA0.1/DMAE0/RTCCLK/
A0/C0/VREF-/VeREF-

P1.1/TA0.2/TA1CLK/COUT/
A1/C1VREF+/VeREF+

P1.2/TA1.1/TA0CLK/COUT/A2/C2
P1.3/TA1.2/ESITEST4/A3/C3

P1SEL1.x

P1DIR.x

P1IN.x

From module 1

P1OUT.x

1

0DVSS

DVCC 1

To Comparator

From Comparator

Pad Logic

To ADC

From ADC

Bus
Keeper

CEPD.x

P1REN.x

0 1

0 0

1 0

1 1

P1SEL0.x

0 1

0 0

1 0

1 1

From module 2

(ADC) Reference
(P1.0, P1.1)

DVSS

To module 1(A)

To module 2(A)

200 Event-Driven Programming Routines and Practices

user guide and read the section about the Connection of Unused Pins to learn what
should be done (there may be more than one of those sections). Open the data sheet
and read the port pin diagram to determine which bitfields control the channel and
which functions are provided through the channel. Go back to the user guide and read
the chapters or sections about those functions to learn about any voltage drain mitiga-
tion advice.

We already know that channels 2 and 3 of port 1 will not be used in our project. They
are referred to as P1.2 and P1.3. Let's begin by reading the section about unused pins.
It tells us to switch the channels to the digital I/O function and put them into the sig-
nal output direction.

So now we go to the Function Selection Registers section of the Digital I/O chapter
of the user guide. It tells us that two registers are used for selecting a function,
P1SEL0 and P1SEL1. And the tables for those registers tell us that they are both
cleared to zero after a power-up or reset; meaning, the General Purpose I/O (GPIO)
function is selected. Although they are already initialized to zero, lines 1 and 2 of
code example 50 show how to clear the corresponding channel bitfields in those reg-
isters to zero.

Code Example 50: Putting channels P1.2 and P1.3, of diagram 60, into a high impedance state.
Instructions which have the additional comment “default,” may not be needed because
those bitfields are initialized to those states during a power-up or system reset.

1); // To select as i/o, clear fields 2 and 3 (default)
2); // To select as i/o, clear fields 2 and 3 (default)
3); // To 1
4); // To)
5); // To enable resistors, set fields to 1
6); // To disable comparator buffers, set fields to 1

Now we put the signal direction of those two channels to be outward. To be in that
state, the port Direction Registers section of the user guide tells us to set a bit in the
corresponding channel bitfield of the direction register (PxDIR). The register table
also tells us that information. The variable name for that register is P1DIR, and its
table tells us it is initialized to zero, the input direction.

We now have done what the user guide tells us for putting the channel into a high
impedance state, now we may take some extra measures to mitigate any parasitic cur-
rent drain.

We open the data sheet to the port 1 pin diagram. This particular port has two dia-
grams. One covers channels 0 through 3, and the other covers 4 through 7. The first
one is shown by diagram 60. We read it to determine what other functions and cir-
cuits may cause some drain at the channel. Just below the pin is a list that shows pre-
cisely which functions are provided by the channels. We also see a signal
conditioning (voltage pull-up/pull-down) resistor and three function circuits which
are of concern to us.

T. N. Krnich 201

In order to stop the possibility of any floating voltage, we

The first of the three functions which are of concern to us is the input to the channel
(P1IN.x). Although it is not selected, it will not be affected by a floating voltage
because the enabled resistor draws the voltage to DVSS (ground). This assures the
channel 2 and 3 bitfields of P1IN remain cleared to zero. Therefore, as expected, it is
of no concern to us.

The Schmitt trigger (shown as a triangle, enclosing a parallelogram, and pointing to
P1IN.x) has an inverted control signal applied to its bottom. When the signal on the
line is high, the circle inverts it to low, and vice versa. That signal turns the trigger on
and off. Although a trigger is an active circuit, as opposed to a passive circuit that
does not need operating power, it apparently does not draw enough current to be of
concern, otherwise, the guide would have said so.

Next is the analog to digital converter function (ADC). It's shown at the top of the
port pin diagram. By reading what the user guide says about this function, we learn
that it is turned off after a power-up or reset. Meaning, its tri-state buffer is in the off
state. So it is also of no concern to us.

The voltage comparator is a different matter. By reading what the user guide says
about it, we learned that it is initialized to an on state. The guide also says that some
levels of voltage will cause the comparator to draw a parasitic current. Those levels
are at the transition voltage levels of the logic gates. If not used, it advises us to dis-
able the comparator by turning off its tri-state voltage buffer, shown in the pad logic
of the port pin diagram. Therefore, on line 6 of the code example, the corresponding
channel bitfields (CEPD3 and CEPD2) are cleared in the Comparator Control 3 register
(CECTL3). In this case, it's comparator E, one of several types of comparators.

Unlocking Modules & Digital Port Channels which are in the LPMx.5 Domain

All modules and port channels which are located in the LPMx.5 domain must be
unlocked before the flow of execution reaches the port channel interrupt handler. The
handler depends on the channels to be unlocked, otherwise, the individual channel
interrupt flags cannot be cleared.

202 Event-Driven Programming Routines and Practices

However, all unused channels, meaning, those which are serving pins which are not
connected to anything, must be put into a high-impedance state to mitigate the flow
of current across those pins and into their channels. That is done earlier in the flow of
execution when the ports are configured.

Code Example 51: Unlocking all the port channels.

; // Unlock all port channels

).

Port Channel Interrupt Flag Handler

Use this routine for clearing all the digital I/O port channel interrupt flags. Otherwise,
they’ll cause ISRs to be unintentionally loaded into the CPU after maskable interrup-
tions are enabled. The result could be unexpected or corrupted program behavior.

Do not get these maskable interrupt flags confused with non-maskable flags. The
non-maskable flags will be handled by the reset fault handler, described later. And
keep in mind that other peripheral modules have their one flags, which can be cleared
in similar, if not the same ways.

The example shown here is in the form of a global function.

The typical microcontroller comes with its first two ports able to set interrupt flags,
and the register variables are generically referred to PxIFG. They are typically eight
bits wide, so the number 0xFF is used to clear all eight bitfields.

Code Example 52: A port channel interrupt flag handler in the form of a function.

1); // function prototype
2 p ; // function call
3){ // function definition
4 ; // Clear P1 channel IFGs
5 ; // Clear P2 channel IFGs
6 } // end portChannelIfgHandler()

Clearing a Port Channel Flag from Inside of an ISR

Another place where a channel IFG must be cleared is from inside of an ISR that ser-
vices an event at a port channel. The example in this case,

Code Example 53: Clearing a port channel IFG.
.

; // clearing the interrupt flag for P1.3

T. N. Krnich 203

Be aware two related matters. When reading the flag code from an interrupt vector
register (IVR), a topic explained later, the act of reading the register will automati-
cally clear the flag. When a register contains a single flag bitfield, reading that regis-
ter will typically clear that flag too.

Determining the Source of an Interrupt Flag

Following this section is a topic that explains how to write a reset fault handler, and
the next chapter explains how to write a conventional interrupt service routine (ISR)
and a fractional low powered interrupt handler. Handlers and ISRs have two charac-
teristics in common. They respond to flags which have been set, and sometimes they
must determine which event had set the flag. The former characteristic is often
dependant on the later. The later also involves vectors and some slightly complicated
relationships which must be known before attempting to write a handler or ISR.
Therefore, those topics are first introduced here.

.

Interrupt Vector

A vector is a fundamental concept used in programming ISRs and fault handlers. It is
an address in main memory which stores the address number to the first instruction in
an ISR or to the boot program. In other words, a vector is a cross-reference between
an interrupt flag and its ISR or to the reset system.

.

Flow of Execution from a Set Flag to an ISR or an RFH

Most, if not all, events which cause an interruption will also involve setting an inter-
rupt flag (IFG) which identifies the event. Once a flag is set, it produces a request for
interruption signal (IRQ), then the interrupt system places the IRQ in a queue based
on its priority with other requests.

The event may cause a non-reset interruption or a reset interruption. The former does
not force a system reset, while the later does. Therefore, we have two different flows
for handling those classes of events. Also, both classes contain members which will
set maskable or non-maskable flags.

204 Event-Driven Programming Routines and Practices

Diagram 61: Two interrupt driven flows. One is
driven by non-reset interruptions, which do not
force a system reset. The other is driven by reset
interruptions, which do force a system reset.

The flow for a non-reset interruption is
handled by an ISR, while the flow for a
reset interruption is managed by an ISR
or a reset fault handler (RFH). The flows
are shown by diagram 60, and their con-
text is within the operating mode dia-
gram on page 132.

Basic Flow for the Non-Maskable and Maskable Interruptions

Interruptions which do not force a reset are caused by non-maskable and maskable
interruptions. Before the interruption occurs, the microcontroller may be in the active
mode while executing an instruction in main() or in an ISR, but it is typically in
some low powered operating mode (LPM 0, 1, 2, 3, 4, or LPMX.5). Interrupting an
ISR is a special case called a nested interruption, and it typically involves an instruc-
tion in the ISR which re-enables maskable interruptions.

When the event occurs, it

 .

Flow of execution for the non-maskable interruption is explained in detail by Chapter
27 on page 249, while the flow the maskable interruption is covered by Chapter 28 on
page 265.

Basic Flow for the Reset Interruption

Interruptions which force a reset are caused by system faults, processing faults, a sig-
nal from the RST/NMI pin, or signals which wake up the microcontroller from some
fractional low powered operating mode (LPMx.5).

Before the interruption, the microcontroller is in one of three possible operating
modes.

.

When an event which causes a reset occurs, it sets a unique flag.

If the microcontroller was in the active or a conventional low powered mode, then

Reset Interruption Non-Reset Interruption

main()

T. N. Krnich 205

If the microcontroller was in a fractional low powered mode, then the

At the end of the reset, which is always a PUC, the address to the boot program is
loaded into the CPU, the microcontroller is released to active mode, and that program
is executed (not shown by diagram 61). The last instruction in the boot calls

Once in , all the configuration routines (also not shown by diagram 61) are
executed, and the flow reaches the reset fault handler. If the reset was caused by a
fault or a signal from the RST/NMI pin, the handler determines which flag caused the
interruption and transfers the flow to the instructions for handling that flag. Other-
wise, the reset fault handler is by-passed.

The flow then reaches the instruction that enables maskable interruptions.

If the reset was caused by an event at a peripheral module which was active in a frac-
tional low powered mode, its flag has been pending in the flag interrupt queue. These
are maskable interrupt flags, so when such interruptions are enabled, the CPU is
immediately interrupted, the flow leaves main(), the flag's vector is loaded into the
CPU, and its ISR is executed. After it is executed, the flow returns to main().

The next, and last, instruction in main(), puts the microcontroller into some conven-
tional low powered or fractional low powered operating mode.

Flow of execution for the reset interruption is explained in detail by Chapter 25 on
page 237.

Flag to Routine Relationships

The routines which we are concerned with here are the reset fault handler (RFH) and
the interrupt service routine (ISR). Before writing any one of these routines we must
know about their relationships with the flags which cause them to be executed.

Flag to Reset Fault Handler (RFH) Relationship

The reset fault handler is typically placed inside of main(), after the microcontroller
is configured, but before maskable interruptions are enabled.

There are many types of events which will set a flag that causes a reset. They are all
listed by

.

The event is referred to as the interrupt source, and each source has its own unique
 All those

 the inter-

206 Event-Driven Programming Routines and Practices

rupt system uses it to determine a point where to then transfer the flow of execution.
That point is either at the beginning of the BOR, POR, or PUC.

This all means that the reset vector has a one-to-many relationship with all sources
which will cause a reset. Keep in mind that the reset vector is not like all the other
vectors. It is not a cross-reference between a flag and its interrupt service routine. It is
a sort of cross-reference between a type of reset flag and a BOR, POR, or PUC.

Diagram 62: The reset fault handler has a relationship with
many reset interrupt flags.

Once the reset system is finished and releases the
microcontroller to active mode, the boot program is
executed. The last instruction in boot calls .
Once the flow of execution reaches the handler, instructions in it have to
distinguish which flag is set and then use that information for transferring the flow to
the proper subroutine that will properly disposition the reset event, if needed.

Flag to ISR Relationships

In contrast to the reset flag which forces a reset, a conventional flag will cause an ISR
to be executed. Meaning, it tells the interrupt system to stop the CPU if it’s running,
to load the corresponding vector into the CPU, and then release CPU to execute the
vector's ISR.

The exception is an interruption from some fractional low powered mode (LPMx.5),
which is a maskable interruption. When the microcontroller emerges from LPMx.5, it
must go through

.

There are two basic relationships between these types of flags and their ISR vectors:
one-to-one and many-to-one. There

 That means such ISRs will have to distinguish which
flag had caused the interruption and then transfer the flow to the proper subroutine.

Diagram 63: For conventional interrupt flags
[which do not force a reset], they can have a one-
to-one or a many-to-one relationship with a single
ISR vector.

For example, let's look at the vector for a
port. A single vector will act as the

between eight port chan-
nel flags at a port and a single ISR. That
means the ISR must distinguish which flag was set and transfer the flow to the sub-
routine for that specific channel.

Many-to-One

Many-to-OneOne-to-One

T. N. Krnich 207

Flag Determining Code Examples

All interrupt flags are located inside of registers. Some are located inside of conven-
tional registers and are in the form of individual bitfields. Others are located inside of
interrupt vector generator registers. A generator is dedicated to doing one job: it uses
the entire register to present a code which indicates the pending interrupt flag (IFG).

Flags which are located in conventional registers are typically

Keep in mind that some conventional flag registers are password protected. So before
an instruction may clear a flag,

Instructions for determining which flag had caused the interruption is typically
placed inside of reset fault handlers (RFH) and interrupt service routines (ISR). So
once the flow of execution enters them, they will typically have to decide which flag
had caused the interruption, then based on the decision, transfer the flow to the proper
subroutine to handle the interruption and its flag.

A control structure is used for making the decision and its resulting transfer. It is in
the form of an if() or switch() statement, which were introduced on page 105.

The international standard for the C Programming Language defines a statement as
specifying an action to be performed.

Using the if() Statement

Use the if() selection statement for reading a single flag in a .
If there are more than one flag which must be read, an individual if() statement
must be used for each one.

A switch() statement should not be used because the number of bitfield patterns
would far exceed the number of flags. The set of patterns would have to include
every pattern of flag bitfields, since multiple flags could be set. That set is calculated
by the factorial of the number of flags in the register.

The if() statement is built of a condition which is followed by a block of instruc-
tions which belong to the statement. That block is called the body of the statement.
When the body has more than one line of instruction, it is delimited with curly brack-
ets.

The condition is in the form of an expression which reads a flag's bitfield. The
expression is built of a register variable and a mask to read the field's state. The result
of the expression must be a zero or 1. That's a Boolean result which the statement

208 Event-Driven Programming Routines and Practices

uses for making a decision. If the expression results to 1, the flag is in a set state, so
the flow of execution is then transferred to the statement's body. Otherwise, the body
is by-passed.

The following example reads Special Function Interrupt Flag 1 register (to
determine the state of the Watchdog Timer Interrupt Flag (If the flag is set,
the flow is transferred to the body of the statement, and its instructions are executed.
The empty curly brackets represent the body. It would have instructions which handle
the timer overflow event in some way, and finish with clearing the flag.

Code Example 54: Using the if() statement to read the Watchdog Timer Interrupt Flag
(WDTIFG). If it is set, the flow will be transferred to the statement’s body.

.

 // If WDTIFG is set, then enter the statement body.

Diagram 64: In this case, the WDTIFG mask is located in the Special Function IFG 1 register (SFRIFG1).
Its description table is not shown. Do not let

.

Using the switch() Statement

Use the switch() multiple selection statement for
.

The statement is built of a controlling expression which is followed by a block of
subroutines. The expression reads the register to get the flag code.

The statement then uses the code for transferring the flow of execution to the proper
subroutine where the event is handled. Each subroutine is distinguished with a case
label, where the label is a specific flag code number.

An important behavior which characterizes a vector generator register is the
. The set only contains zero and even numbers. Zero represents no

outstanding flag, while an even number identifies a specific flag.

Although we may just simply use the register variable as the controlling expression
for a switch(), there exists an MSP430 intrinsic function that may be used instead. It
leverages that even number characteristic for improving the transfer speed to the
proper case. The name of the function is .

The Function

When reading an interrupt vector generator register, use this function as the control-
ling expression in a switch(). It will force the compiler to create an efficient data

SFRIFG1 Register
15 14 13 12 11 10 9 8

Reserved
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0
JMBOUTIFG JMBINIFG Reserved NMIIFG VMAIFG Reserved OFIFG WDTIFG

rw-(1) rw-(0) r0 rw-0 rw-0 r0 rw-(1) rw-0

T. N. Krnich 209

structure out of the switch() that will be faster to execute. The following example
shows its syntax.

Code Example 55: Syntax for the function.

This function takes two parameters, and it returns a single value.

The first parameter (reg) is the , and the second variable (range) is
the end . It represents the range of codes from zero to a specific even integer.
In other words, the end code is the last or largest number in the generator's set of
codes. The range parameter can be in the form of an integer or the mask for the flag
of the last code number.

This function returns an integer that represents the flag code presented by the IVR.
And that number tells the switch() which is the proper case to execute.

Code Example for using the switch() to Determine which Flag is Set

This example involves a switch() that reads the interrupt vector generator register
for Port 1 to determine which channel had set the flag, and then it transfers the flow
of execution to the proper case where the event is handled. The flag is automatically
cleared when the register is read.

The PxIV Register Table. The IVR and table for the port is shown by diagram 65.
This is a generic IVR and table for a digital I/O port which is typically published by
the microcontroller's user guide. Meaning, we use it for all digital I/O ports having
channels which can interrupt the CPU. It's called the Port x Interrupt Vector (PxIV)
Register, where the letter x is replaced with the port number of interest to us. In this
case, it's the P1IV Register. Notice that all sixteen bits of the register are dedicated to
presenting a single flag code, but only the lower eight are needed.

Diagram 65: A port interrupt vector register (PxIV).

PxIV Register
15 14 13 12 11 10 9 8

PxIV
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0
PxIV

r0 r0 r0 r-0 r-0 r-0 r-0 r0

PxIV Register Description
Bit Field Type Reset Description
15-0 PxIV R 0h Port x interrupt vector value

00h = No interrupt pending
02h = Interrupt Source: Port x.0 interrupt; Interrupt Flag: PxIFG.0; Interrupt
Priority: Highest
04h = Interrupt Source: Port x.1 interrupt; Interrupt Flag: PxIFG.1
06h = Interrupt Source: Port x.2 interrupt; Interrupt Flag: PxIFG.2
08h = Interrupt Source: Port x.3 interrupt; Interrupt Flag: PxIFG.3
0Ah = Interrupt Source: Port x.4 interrupt; Interrupt Flag: PxIFG.4
0Ch = Interrupt Source: Port x.5 interrupt; Interrupt Flag: PxIFG.5
0Eh = Interrupt Source: Port x.6 interrupt; Interrupt Flag: PxIFG.6
10h = Interrupt Source: Port x.7 interrupt; Interrupt Flag: PxIFG.7; Interrupt
Priority: Lowest

210 Event-Driven Programming Routines and Practices

The register's table, referred to as the PxIV Register Description, has five columns.
The first column is labeled as Bit, while the second column is labeled as Field. They
tell us that the bitfield mask is PxIV and is sixteen bits wide (15-0). The mask is
generic, so in this case it is actually P1IV, which also happens to be the register vari-
able! The next column shows the field's type as being R, meaning it is a field that can
only be read, not written into. The Reset column shows the field as 0h, which is an
alternative hexadecimal notation for 0x0. That means after a reset, the bitfield is
cleared to zero. The last column is labeled as Description. It lists the flag code num-
ber for each port channel (02h to 10h). Notice that every code number is even. When
no flag is pending, the code is zero. Also notice that every item in the list is priori-
tized, with channel 1 having the highest priority. The way these codes are listed and
their priority is a common design practice for interrupt vector generating registers.

The switch() Code. Code code example 56 shows a switch() statement that reads
the IVR for Port 1 to determine which channel had set the flag, and then it transfers
the flow of execution to the proper case where the event is handled. When the flag is
read, it is automatically cleared.

Code Example 56: Using the switch() to determine which channel interrupt flag had
caused the interruption in Port 1.

1 // Get code, then switch to proper case
2 : // Case for channel 0 (P1IFG.0)
3 // Handle the event and
4 ; // Exit switch()
5 // Case for channel 1 (P1IFG.1)
6 // Handle the event and
7 ; // Exit switch()
8 : // Case for channel 2 (P1IFG.2)
9 // Handle the event and
10 // Exit switch()
11 : // Case for channel 3 (P1IFG.3)
12 // Handle the event and
13 // Exit switch()
14 // Case for channel 4 (P1IFG.4)
15 // Handle the event and
16 // Exit switch()
17 : // Case for channel 5 (P1IFG.5)
18 // Handle the event and
19 // Exit switch()
20 : // Case for channel 6 (P1IFG.6)
21 // Handle the event and
22 // Exit switch()
23 : // Case for channel 7 (P1IFG.7)
24 // Handle the event and
25 // Exit switch()
26 } // End switch()

On line 1, instead of just using the register variable P1IV as the controlling expres-
sion, the function is used. The function will tell the MSP430
compiler to create a data structure out of the switch() that is quicker to traverse, and
to return the code in the P1IV Register. Its parameters are the register variable and the

T. N. Krnich 211

code for the last flag in the range of codes. When the flow of execution enters the
switch(), it will use the code to transfer the flow to the proper case.

The cases can be understood as subroutines. There are eight, one for each port chan-
nel's flag.

One line 2 is the first case, and it handles

On line 4 is a Break statement.
 The remaining seven cases work in the same way.

Conventional Register Scenario

An example of a conventional register which is completed dedicated to flags is the
port channel interrupt flag (IFG) register. It's shown by the following diagram. The
switch() code for determining which flag is set in the register is shown by code
example 57.

Diagram 66: A PxIFG register and its description table.

Code Example 57: Using a switch() to search for a set flag in a conventional which is fully occu-
pied with bitfields of flags.

1 { // Read the register, then switch to proper case
2 // Case for channel 0 (P1IFG.0)
3 // Handle the event and
4 // Exit switch()
5 : // Case for channel 1 (P1IFG.1)
6 // Handle the event and
7 // Exit switch()
8 // Case for channel 2 (P1IFG.2)
9 // Handle the event and
10 // Exit switch()
11 // Case for channel 3 (P1IFG.3)
12 // Handle the event and
13 // Exit switch()
14 // Case for channel 4 (P1IFG.4)
15 // Handle the event and
16 // Exit switch()
17 // Case for channel 5 (P1IFG.5)
18 // Handle the event and
19 // Exit switch()
20 : // Case for channel 6 (P1IFG.6)
21 // Handle the event and
22 // Exit switch()
23 // Case for channel 7 (P1IFG.7)

PxIFG Register
7 6 5 4 3 2 1 0

PxIFG
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxIFG Register Description
Bit Field Type Reset Description
7-0 PxIFG RW Undefined Port x interrupt flag

0b = No interrupt is pending.
1b = Interrupt is pending.

212 Event-Driven Programming Routines and Practices

24 // Handle the event and
25 //
26 } // End switch()

The difference between a switch() that reads an IVR and a switch() that reads a
conventional IFG register involves the function and the cases.
The IVR scenario uses the function, and the cases numerically increment by two inte-
gers. In this scenario, the function is not used, and the cases increment by the flag's
place value in the registers word. In this case, it's an eight bit word. Here's how it
works.

.

Once the switch() has the register contents, it transfers the flow of execution to the
proper case. Let's assume the contents is 0x2, the flow is transferred there. The sub-
routine in the case is executed, and the break statement transfers the flow out of the
switch().

Enabling and Disabling Maskable Interruptions

Events at modules cause interrupt flags to be set. A flag signals the interrupt system
to interrupt the CPU and load an interrupt service routine in it or cause a system reset.

A maskable interruption is one that is produced by a peripheral module. Its signal can
be blocked from telling the interrupt system to handle an interruption. In contrast, a
non-maskable interrupt cannot be blocked, and it is typically produced by a system
module.

The bitfield that controls access to the interrupt system is called the General Interrupt
Enable bit (GIE), and it is located inside of the CPU's status register. Only assembly
language code can directly access that register. But two MSP430 intrinsic C functions
can be used for manipulating the GIE. One can set it to allow maskable signals to
reach the interrupt system. The other can clear it to block the signals.

An instruction that enables maskable interruptions is typically placed after system
and peripheral modules are configured and right after the reset fault handler.

An instruction that disables maskable interruptions is placed before instructions that
depend on disabled maskable interruptions. For example, some modules require
maskable interruptions to be disabled before they are reconfigured.

T. N. Krnich 213

Code Example 58: Enabling maskable interruptions. Thi

 // Enable maskable interrupts

Code Example 59: Disabling maskable interruptions. This

 // Disable maskable interrupts

Unlocking and Locking FRAM

Before going into an example about unlocking and locking FRAM, a review of vola-
tile and non-volatile memory and what controls access to FRAM is in order. The
information presented in this section is a prerequisite to the next section that presents
the volatile data handler.

Review of Volatile and Non-Volatile Memory

Main memory is constructed of volatile and non-volatile sections of memory. Volatile
sections are typically made of a semiconductor technology called Static RAM
(SRAM), while non-volatile segments will be constructed of either a technology
called Flash, or Ferro-Electric RAM (FRAM), or both. Non-volatile segments were
initially built only of Flash, but the latest generations are typically built of FRAM and
Flash. The word Flash is not an acronym; it's just simply a name that the inventor
gave it.

In order to work, memory is energized with electrical power. When the power is
removed, data which is stored in volatile memory will vanish, while data which is
stored in non-volatile memory is retained. Our program is stored in non-volatile seg-
ments of memory, but storage variables will automatically be placed in non-volatile
segments.

However, data which is stored in non-volatile memory can actually be changed. For
example, we can erase the existing program in it, and replace the program with a
newer one. And that work can also be done while the microcontroller is in-service.

FRAM Access Control

Non-volatile memory will typically have some controls for protecting its contents.
The controls for protecting FRAM grow more sophisticated with newer generations
of the MSP430.

At least one system module is dedicated to controlling the CPU's access to FRAM.
The control is divided into providing permissions for

 That means some microcontrollers will leave the FRAM unlocked after a reset,
while others will lock it.

214 Event-Driven Programming Routines and Practices

The modules which control access to FRAM are typically called the
 Registers for

those modules contain the bitfields which can be configured to control the type of
access we desire.

All FRAM microcontrollers will come with a system controller, but they will also
come with either a FRAM controller, or an MPU, or both. The registers which control
access to FRAM will belong to one of those modules, but control over FRAM will
not typically be shared across them. Therefore, to determine which registers provide
access control, we have to refer to the microcontroller's Functional Block Diagram,
as published by its data sheet, to determine which modules our microcontroller has,
and then we have to refer to the microcontroller's user guide to learn about them. An
example of that diagram is shown on page 18.

The system controller, the FRAM controller, and the MPU will carry out work other
than access control, but it is the MPU that focuses on specific types of access con-
trols, such as dividing FRAM into variable sized sections of security with their own
read, write, and execute permissions.

Example for Unlocking and Locking FRAM

This example uses the MSP430FR2433. When it emerges from reset, the FRAM
remains unlocked to allow the CPU to read and execute what's inside of it, but it's
locked to prevent any writing into it.

Be aware that in this case our microcontroller (an MSP430FR2433) has two separate
sections in main memory which are constructed of FRAM. The user guide and data
sheet will tell us that. One section is called Program FRAM, and it's where our pro-
gram is stored. The other section is called Data FRAM or Information FRAM. The
purpose of that section is to provide some non-volatile space in memory for us to use
for whatever want to put in there.

The example involves three lines of instructions. The first line

Register which Controls the FRAM

Keep in mind that different families and models within those families of microcon-
trollers will use different registers, different options, and different bitfield masks for
controlling access to FRAM, so this register is just an example to provide one point
of view. The example's main purpose is to point out the pattern we'll always use when
accessing data in FRAM: first unlock it, then access it, then relock it.

This microcontroller depends on its system control module for controlling access to
its FRAM. And the control bits are located in the System Configuration Register 0
(SYSCFG0), as shown by diagram 67. Let's take a closer look at that register.

T. N. Krnich 215

It's a sixteen bit register, with the upper eight bitfields used for a password having the
mask FRWPPW. Every time we write into that register, the instruction must include the
password.

This microcontroller has some ability to partially protect the Program FRAM by
locking a range of addresses in it so the CPU will not be able to read or write into
them, but it will be able to execute the instructions in them. Fields 7 through 2, which
are identified with the mask FRWPOA, are used for . For example, if
we were to set the bit in field 3 to 1, then

Diagram 67: The System Configuration Register 0 (SYSCFG0) for an MSP430FR2433.

Bitfield 1, which has the mask DFWP, will protect the section of Data FRAM by con-
trolling the CPU's ability to write into that section. Bitfield 0, having the mask PFWP,
will protect the Program FRAM. When these fields are cleared to zero, the CPU will
be able to write into those sections.

(1) The password must be written with the FRAM protection bits in a word in a single operation.
(2) These bits are valid only in the MSP430FR235x and MSP430FR215x devices.

SYSCFG0 Register
15 14 13 12 11 10 9 8

FRWPPW(1)

rw-1 rw-0 rw-0 rw-1 rw-0 rw-1 rw-1 rw-0

7 6 5 4 3 2 1 0
FRWPOA(2) DFWP PFWP

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 rw-1

(1) The password must be written with the FRAM protection bits in a word in a single operation.
(2) These bits are valid only in the MSP430FR235x and MSP430FR215x devices.

SYSCFG0 Register Description
Bit Field Type Reset Description
15-8 FRWPPW(1) RW 96h FRAM protection password

FRAM protection password. Write with 0A5h to unlock the FRAM protection
registers.
Always reads as 096h

7-2 FRWPOA(2) RW 0h Program FRAM write protection offset address from the beginning of Program
FRAM. The offset increases by 1KB resolution.
000000b = The write protection starting from the beginning of Program FRAM;
the entire Program FRAM under PFWP protection
000001b = The FRAM program memory is unprotected (read/write) between the
beginning of program FRAM and the beginning of program FRAM + 1024 B. The
remainder of the program FRAM is protected by the PFWP protection.
000010b = The FRAM program memory is unprotected (read/write) between the
beginning of program FRAM and the beginning of program FRAM + 2048 B. The
remainder of the program FRAM is protected by the PFWP protection.
000011b = The FRAM program memory is unprotected (read/write) between the
beginning of program FRAM and the beginning of program FRAM + 3072 B. The
remainder of the program FRAM is protected by the PFWP protection.
000100b = The FRAM program memory is unprotected (read/write) between the
beginning of program FRAM and the beginning of program FRAM + 4096 B. The
remainder of the program FRAM is protected by the PFWP protection.

111111b = The FRAM program memory is unprotected (read/write) between the
beginning of program FRAM and the beginning of program FRAM + 64512 B.
The remainder of the program FRAM is protected by the PFWP protection.

1 DFWP RW 1h Data (Information) FRAM write protection
0b = Data (Information) FRAM write enable
1b = Data (Information) FRAM write protected (not writable)

0 PFWP RW 1h Program (Main) FRAM write protection
0b = Program (Main) FRAM write enable
1b = Program (Main) FRAM write protected (not writable)

216 Event-Driven Programming Routines and Practices

Code Example

The data we will access is a storage variable located in FRAM, and the FRAM is
locked when the microcontroller emerges from reset. The MSP430 compiler typically
puts storage variables in volatile memory built of SRAM, but an earlier instruction
(not shown) had told the compiler to put it into non-volatile memory built of FRAM.
That instruction had used the PERSISTENT() #pragma to put it into FRAM, and that
will be explained by the next section about the volatile data handler.

This microcontroller has two sections of FRAM: Program and Data FRAM. Since we
need to know which section of FRAM to unlock, we then ask ourselves which section
did the PERSISTENT() #pragma put it into? We need that answer in order to unlock
the correct section of FRAM. It will typically be put it into the lowest addresses of
Program FRAM. But how do we know that? We can check the memory to verify that
assumption.

To carry out that check, we begin by using our programming integrated development
environment (IDE), in this case it's Code Composer Studio (CCS), to load the pro-
gram into the microcontroller, in other words, put it into debug mode. Then we go to
the Main Menu and click on View, and then select Memory to open the Memory
Browser window. In that window we type into its search textbox the name of the vari-
able, and then press Enter. The browser will search for the variable and then highlight
its address location and contents in memory. Sometimes the browser may not be able
to locate a PERSISTENT() variable, so instead you can go directly to your program
code, select the variable, then mouse right-button click on it to open a pop-up menu,
and then select Add Watch Expression. Now go back to the Main Menu and click
on View, and then select Expressions to open the Expressions window. The variable
and its address number will appear in the window. Now we know the address to the
variable, so we open the data sheet for the microcontroller and go to the Memory sec-
tion. That section will tell us the address boundaries of every section in main mem-
ory. With all that information we are able to determine that our variable is located in
Program FRAM, not Data/Information FRAM.

Code Example 60: Unlocking Program FRAM to update a variable in FRAM, and then relocking
it.

.

1 ; // Unlock Program FRAM,
2 // then increment counter variable, and
3 ; // then relock Program FRAM.

So on line 1 of the code example, the instruction unlocks the Program FRAM. Be
very careful about this instruction. The password mask is actually equal to
and we want to clear the Program FRAM Write Protection (field to zero; there-
fore, we want to combine the password and the mask, not the mask, to
form a sixteen bit word, and then assign it to the register. On line 2, an instruction
accesses the variable named and then increments it by 1. On
line 3 the instruction relocks the Program FRAM. Once again be careful with the

T. N. Krnich 217

relocking instruction. We want the bits to remain cleared to zero, and we
want the and fields set to 1. Therefore, we have to combine the password
mask, the mask, and the PFWP mask to form a sixteen bit word, and then assign
it to the register.

Volatile Data Handler

As described earlier on page 76, a storage variable is used for holding data which
changes. Furthermore, variables can be organized into a set of variables called a stor-
age structure. Structures are typically made of a type of storage structure called an
array. When the CPU executes a program instruction which creates a storage variable
or structure, it typically places them in a section of main memory called random
access memory (RAM). In contrast, our program is stored in non-volatile read only
memory (ROM).

RAM is volatile. Meaning, when power is removed from main memory, all the data
which is stored in RAM vanishes. Therefore, any data stored in RAM is called vola-
tile data. Power will be removed from memory when the microcontroller is put into a
fractional low powered operating mode (LPMx.5), or when the microcontroller goes
through a reset, and obviously, when it is disconnected from power. When the micro-
controller is put into a conventional low powered operating mode, such as LPM 1, 2,
3, or 4, power is not removed from main memory.

If we need to protect variables and storage structures from volatility, we have some
options.

If FRAM is used for main memory, we have at least one method for protecting vola-
tile data, but depending on the microcontroller's design, we may have two methods.
The first method involves a preprocessing directive called a PERSISTENT() #pragma.
It's basically an MSP430 intrinsic function that can copy volatile data into a segment
of ROM which is built of FRAM, the same place where our program is located. The
second method involves a system module called Backup Memory (BAKMEM), but
not all FRAM microcontrollers have this module. It's basically a set of registers
where we can copy volatile data into. The registers are sixteen bits wide, and the
amount of registers available to us depends on which microcontroller model we
choose. This section will describe how to use both of those methods.

218 Event-Driven Programming Routines and Practices

Using the PERSISTENT() #pragma to Protect Volatile Data

Use the PERSISTENT() #pragma for converting a variable or data structure from a
volatile class of storage to a non-volatile class of storage. So when the microcontrol-
ler is put into a fractional low powered operating mode (LPMx.5), or goes through a
reset, or when it is disconnected from power, that data will not be lost.

Two programming examples are presented. One example protects a single variable,
and the other example protects the variables in an array. Keep in mind that the code is
for an MSP430FR2433, and the examples are an elaboration on code example 60, on
page 216, that shows how to unlock and relock FRAM in that specific microcontrol-
ler. That microcontroller has two sections of FRAM, one is dedicated to program
storage, and the other is dedicated to data storage. Those two FRAM sections were
introduced and explained on page 216, and we learned how to determine which one
of them were used by the PERSISTENT() #pragma for storing non-volatile variables
and at which address in memory. The following two examples provide a view of how
this specific microcontroller is used, while other microcontrollers, especially of other
families of MSP430, will most probably use different registers and may have just a
single section of FRAM or they may have more than two, but the MSP430 compiler
will probably still place the non-volatile variables in the lowest addresses of program
FRAM to protect them.

Code Example for Protecting a Single Variable

In this example, the storage variable we want to protect is named counter.

Code Example 61: Using the PERSISTENT() #pragma to create a non-volatile variable. It will
be saved during a fractional low powered mode (LPMx.5), a reset, and when power is lost.
The FRAM unlocking and locking instructions are specific to the MSP430FR2433.

1 // Make the counter variable non-volatile
2 // Declare and initialize the variable
3){
4 // Unlock Program FRAM
5 ; // Increment counter variable
6 ; // Relock Program FRAM
7 ; // Read counter and assign to z
8 } //

On line 1 we place the variable as a parameter for the PERSISTENT() #pragma. Notice
that there is no

 . That is a requirement.

On line 2 we declare the variable, and we do it just as we would declare any other
variable. It is specified as volatile, and in this case, further specified as a char and
initialized to zero.

T. N. Krnich 219

On line 3 is the , and on line 4 is the instruction that
unlocks the . As a reference, the System Con-
figuration Register 0 (SYSCFG0) table is shown by diagram 67 on page 215. Be
careful about the syntax for unlocking the FRAM, because it uses a register password
(

One line 5, the number stored by the variable is read and incremented by one, and
then on line 6, the FRAM is Once again, pay attention to how the password,
the and the PFWP masks are combined into a sixteen bit word and assigned to

 to lock the FRAM.

On line 7 is just a simple instruction that reads

Code Example for Protecting the Variables in an Array

In this example, three storage variables are organized into an array named r. Keep in
mind that the unlocking and locking instructions are specific to the MSP430FR2433,
so the register variable and masks will probably be different for other microcontrol-
lers.

Code Example 62: Using PERSISTENT() #pragma to make a data structure non-volatile.

1 // make r non-volatile
2 // declare and initialize the data structure
3
4 ; // Unlock Program FRAM
5 // Increment variable at r[2]
6
7 } // End main()

On line 1 we place the identifier for the array as a parameter for the PERSISTENT()
#pragma. Notice that there is no semicolon that terminates the instruction, and that
the instruction is located outside of and before the main() function. That is a require-
ment.

On line 2 we

6. The char specifier just simple makes every variable in the array to be
eight bits wide. And the array must always be declared directly after the PERSIS-
TENT() #pragma.

220 Event-Driven Programming Routines and Practices

On line 3 is the signature for our main() function, and on line 4 is the

.

One line 5, the number stored by the array at position r[2] is read and incremented
by one, and then on line 6, the FRAM is relocked. Once again, pay attention to how
the password, the DFWP, and the PFWP masks are combined into a sixteen bit word and
assigned to SYSCFG0 to lock the FRAM. And finally, on line 7 is the

.

Using the Backup Memory Registers

If your microcontroller comes with backup memory registers, then use them for
copying data which are located in volatile variables and saving the data in non-vola-
tile registers. They will remain non-volatile during a fractional low powered mode
(LPMx.5), a reset, and when powered is disconnected.

The following diagram shows a typical register table for a set of backup registers, as
published by the microcontroller's user guide. It shows two registers that provide us
with four bytes of non-volatile storage, but other microcontrollers may have many
more. The first column, named Offset, tells us where the register is located in main
memory. The microcontroller's data sheet tells us at which address the registers
begin, and the offset tells us how many address numbers the register is away from the
first address in memory. Since we're developing in C, we’ll be using the register vari-
able names to access those registers, so those address numbers are of no concern to
us.

Diagram 68: A register table for some backup memory registers, as published by the microcontroller’s
user guide. In this case, four bytes of backup memory is available.

The next column, named Acronym, is of concern to us. It lists the register variable
names. Each register has three variable names. For example, BAKMEM0 is used for
reading and writing into the entire sixteen bits of the register. That's called word
mode access. The remaining two variables, which have the suffixes _L and _H, are
used for accessing the lower or upper eight bits of the register respectively. When
using those names, the process is called byte mode access.

The last column is named Reset. It just simply tells us what is in the register after a
reset. It's undefined because what is stored in the register depends on what our pro-
gram had written into it before the reset or power-up event.

BAKMEM Registers

Offset Acronym Register Name Type Access Reset
00h BAKMEM0 Backup Memory 0 Read/write Word Undefined

00h BAKMEM0_L Read/write Byte
01h BAKMEM0_H Read/write Byte

02h BAKMEM1 Backup Memory 1 Read/write Word Undefined
02h BAKMEM1_L Read/write Byte
03h BAKMEM1_H Read/write Byte

T. N. Krnich 221

Shown by code example 63 is a variable that has been declared and initialized on line
1, and on line 2. Byte mode is used for

.

Code Example 63: Using a BAKMEM register to protect data stored in a volatile variable.

1 ; // declare and initialize x as an 8-bit variable
2 // write the value of x into BACKMEM_L

Determining How Much Memory is Consumed

There will come a time when you will need to know how much memory your pro-
gram has consumed and how much remains available. Use the Memory Allocation
tool for viewing that information. To open this window while in CCS, go to the Main
Menu, click on View, and then select Memory Allocation. It's shown by diagram 69.

Diagram 69: Memory Allocation window. Use it for determining how much storage the PERSIS-
TENT() #pragma is consuming in bytes. It will appear under FRAM as .TI.persistent. The backup registers
will not be explicitly shown, because they will be implied within the sixteen bit peripherals.

Main memory is divided into sections, where each has its own purpose. The tool will
itemize them into a list. Some sections can be expanded to view their subsections. In
one of the FRAM sections, you will see the subsection where the PERSISTENT()
#pragma had placed its code. The subsection is named .TI.persistent. Another
subsection of concern to us is named .text; it is where our program is stored. On the
right side of the window is the total amount of memory allocated, or available, in
bytes for each section.

The PERIPHERALS_8BIT section contains all the , while
PERIPHERALS_16BIT contains all the . The info sections con-
tain data such as the microcontroller device identification number, a CRC value, and
silicon chip hardware versions. Look in the device descriptor table of the data sheet
to learn what's exactly in there. RAM stores volatile data, such as the program execu-
tion stack and variables, while FRAM stores non-volatile data, like our program. The

222 Event-Driven Programming Routines and Practices

allocated sizes will not change, but may be different for other microcontrollers. The
subsections which fill RAM and FRAM are described, to some extent, by the
MSP430 Optimizing C/C++ Compiler User Guide (SLAU132), but the MSP430
Assembly Language Tools User Guide (SLAU131) goes into more detail.

Entering a Low Powered Operating Mode

The MSP430 offers a set of operating modes to choose from. Each member of the set
is different. The set shown here is what is currently offered. But depending on the
microcontroller, it may contain fewer modes.

The primary mode is called

The microcontroller's user guide
tells us exactly which systems and peripherals are cutoff, while the data sheet gets
into specifics. The typical operating mode diagram, as published by a user guide, is
shown on page 132.

The set of modes can be divided into a subset of conventional low powered operating
modes and a subset of fractional low powered operating modes. Here is what distin-
guishes one from the other. The fractional modes practically turn off everything
except for the real-time clock module (RTC) and the ability for some ports to sense
an incoming signal from an event. This means all volatile data is lost, and when the
microcontroller interrupted from such a mode, the flow of execution begins at the
brown-out reset (BOR).

Putting the microcontroller into a low powered operating mode is typically the

.

Conventional Lower Powered Operating Modes

When the microcontroller is interrupted from a conventional low powered operating
mode, it will immediately enter the active mode (AM) and the flow of execution will
begin at the proper interrupt service routine (ISR). After the ISR is executed, the
microcontroller is automatically put back into the mode from which it was inter-
rupted.

Code example 64 lists five instructions. Each one puts the microcontroller into a spe-
cific low powered mode. The instruction is typically placed at the end of main(),
right before the return statement.

T. N. Krnich 223

Code Example 64: The set of conventional low powered operating modes.

1 // enter mode 0
2 // enter mode 1
3 // enter mode 2
4 // enter mode 3
5 // enter mode 4

Fractional Lower Powered Modes (LPMx.5)

Earlier generations of microcontrollers do not have this feature. But if your micro-
controller is built of FRAM technology, it most probably does have it.

When the microcontroller is interrupted from a fractional low powered operating
mode (LPMx.5), it will immediately enter the active mode where the flow of execu-
tion will begin at the brownout reset (BOR). An instruction in main() will enable
maskable CPU interruptions. So directly after they are enabled, the interrupt system
can load the proper ISR into the CPU. When finished with the ISR, the flow of execu-
tion is transferred back to the instruction which put the microcontroller into LPMx.5.

Putting the microcontroller into a fractional low powered mode is a two step routine.
First the microcontroller is prepared for it, and then a conventional low powered
operating mode instruction completes the job.

Preparing the microcontroller just simply means to turn off the power management
module (PMM) voltage regulator. It supplies power to everything in the microcon-
troller. Once off, power will typically remain flowing only to the real-time clock
module (RTC) and to the input gate of every port channel which can provide an inter-
ruption service. Including the channel that can signal the microcontroller to reset
from a BOR or load an ISR into the CPU (that particular channel provides the RST/
NMI function). Cutting off the power also means losing all data stored in volatile
memory, which is a section of memory referred to as RAM.

Therefore, from an interrupt perspective, we have two sources of interrupt signals
offered to us, at least for now, while in a fractional low powered mode. The first is an
internal signal from the RTC. It can produce a signal when a specific calendar time is
reached, or when the RTC is in timer mode and causes a timer overflow event. The
second signal may come from an external source produced by some peripheral
device.

Code example 65 shows the instructions for preparing the microcontroller for enter-
ing a fractional mode.

.

224 Event-Driven Programming Routines and Practices

Code Example 65: Preparing a microcontroller to enter a fractional low powered operating
mode.

1 // function prototype
2 ; // function call
3 // start of function definition
4 ; // unlock PMM registers w. regard to SVSHE
5 ; // set to turn off PMM voltage regulator
6 ; // lock the PMM registers
7 } // end prepareForLPMx5()

On line 1 is the function prototype. Place it before . On line 2 is the function
call. Place it right before the instruction which puts the microcontroller into a low
powered mode, as shown by code example 64. On lines 3 to 7 is the function defini-
tion that contains instructions which prepare for a fractional low powered mode; it is
typically placed outside of and after main().

Let’s now take a closer look at the body of the function.

 .

On line 5, a byte mode instruction will set a bit in the lower eight fields of the register
to turn off the voltage regulator. In this register, that field's mask is PMMREGOFF. The
last instruction, on line 6, uses a byte mode instruction to relock the PMM registers.
According to the user guide, we just need to assign the wrong password to do the job.

Code examples 66 and 67 show how to put the microcontroller into a fractional low
powered mode. They both use the function defined by code example 65 for preparing
the microcontroller for the fractional mode. At the time this book was published, the
MSP430 can only be put into LPM3.5 or LPM4.5. To do that, we prepare the micro-
controller for the fractional mode, as shown on lines 1. Then on lines 2, we either use
the instruction for LPM3 or LPM4.

Code Example 66: Placing the microcontroller into LPM3.5.

.

1 ; // prepare for LPMx5, see code example 65
2 // enter mode 3

Code Example 67: Placing the microcontroller into LPM4.5.

1); // prepare for LPMx5, see code example 65
2 // enter mode 4

T. N. Krnich 225

Delay Function

A program may have points in the flow of execution where it must be paused before
proceeding to the next instruction. The pause may be needed for one period of time,
or it may be needed over several periods of time. For example, a pause can be used by
a routine for toggling a port channel from low to high to illuminate an LED for a
period of cycles.

A pause can be inserted into the flow of execution with a signal from a timer module,
or it can be inserted with the function.

That function is intrinsic to the MSP430 compiler. It does not return any value, but it
does take a single value in the form of an integer. That integer represents clock
cycles, meaning, the number of clock cycles which the CPU must count through
before it proceeds to the next instruction. Therefore, this function forces the CPU to
be occupied with counting cycles, and that is an energy consuming process.

Use this function in a routine when CPU availability and energy consumption do not
have a high priority or no negative consequences. Use an interrupt signal from a
timer overflow event for creating pauses when CPU availability and energy con-
sumption is a high priority.

The following example shows the function as occupying a single line of code with
 as the number of cycles it must count through. If the CPU is driven by a

MHz clock signal, this number of cycles is very close to producing a second
delay.

If a routine does not depend on a delay in units of time, but purely on the number of
clock cycles needed to execute some instructions or process, then use the index to
lookup “clock cycles for an instruction” for information about determining the num-
ber of clock cycles you need.

Code Example 68: Use the function for inserting a pause into the flow of
program execution. If the clock signal is running at MHz, a value of will produce
about a second delay. The default clock speed after a power-up is MHz.

; // For a 1 MHz clock, this produces a delay of ~1 second

The parameter for this function is an unsigned long integer. Meaning, the number
of cycles can be within the range from 0 to 4,294,967,295.

226 Event-Driven Programming Routines and Practices

Chapter 23

Interrupt Handling and Interrupt Vectors

When properly programmed, the MSP430 is a microcontroller which can be put into
an appropriate operating mode from where it will monitor for events, react to those
events, and then return back to the mode from where it began to continue monitoring
for events. It is designed and manufactured to be an event driven microcontroller.

Earlier chapters had introduced the interruption and its vector. This chapter goes into
that topic with more detail...the basic details we need for understanding how an inter-
rupt flag is bound to an ISR.

CPU Interruptions are Event-Driven

The MSP430's ability to be event driven is provided by its CPU Interruption System.
It is built with a distributed set of event monitoring blocks of logic and a single block
of control logic.

Event Monitoring Blocks

The monitoring blocks are built into the various systems and peripheral modules.
Each block is unique to the system or peripheral module, so they can monitor for
events which are unique to their system or module. When the logic senses an event, it
sets a specific bit (to 1) in a register to indicate that the event has been sensed. That
bit is located inside of a bitfield called an interrupt flag (IFG). Each type of event
monitoring logic has its own dedicated IFG. Therefore, the IFG distinguishes which
specific event had occurred. Keep in mind that at this point of the interrupt process,
the interrupt system views the IFG as an interrupt request (IRQ) signal.

Conventional Flag Registers and Interrupt Vector Registers

A conventional register of flags is just simply an eight or sixteen bit register where
each bitfield is dedicated to a single flag. Some registers may include a mixture of
fields where some are dedicated to flags while others are dedicated, for example, to
configuring a peripheral module.

An interrupt vector register (IVR) is an eight or sixteen bit register where all the
fields are used for presenting a single code number. The number represents a specific
flag. When a program instruction reads such a register, typically, that action will also
automatically clear the flag. If more than one flag has been set and are pending (wait-
ing to be serviced), the IVR will automatically present the next flag code. That next
flag will typically be serviced after the flow of execution has executed the ISR for the
current flag and returned back to the operating mode from where it was interrupted.
The pending flag will then put the interrupt system back into action.

228 Interrupt Handling and Interrupt Vectors

The Interrupt Service Routine and Vector

An interrupt service routine (ISR) is a function (set of instructions) we develop for
handling an event, and an interrupt vector is a unique number which we use for bind-
ing a flag to an ISR. Although that number begins as an integer that represents the
vector's priority among all the other vectors, when our program is built and loaded
into memory, the MSP430 compiler converts the priority number to the main mem-
ory address number where the first instruction in the ISR is located.

Interrupt Vectors

All vectors are defined as symbolic constants by a section located at the end of the
microcontroller's file. For brevity, diagram 70 shows the beginning of
that section for an MSP430FR2433, and it is very typical for all MSP430 microcon-
trollers. The first two definitions can be seen, and both are for the PORT_2_VECTOR.
That is the actual vector name we use for binding port 2 IFGs to an ISR. The first def-
inition is for Assembly language usage, while the second definition is for C language
usage. Both #define directives create the same symbolic constant: PORT2_VECTOR.

Diagram 70: Shown here is the beginning of the interrupt vector definitions as listed at the end of typical
msp430.h header file.

Shown by diagram 71 are all the vector definitions in the C language. The
Assembly definitions are not shown, since we're not interested in them. The second
column shows the symbolic name of the vector. That symbol is what we use for bind-
ing the vector to an ISR, or more precisely, binding the flags which are connected to
that vector to an ISR. The third column shows the vector's interrupt priority number.
For example, (41 * 1u) is a C language expression that produces the unsigned integer
41. The product of 41 and 1u, where the suffix u converts n

t. That will break the ability to

/**
* Interrupt Vectors (offset from 0xFF80 + 0x10 for Password)
**/

#pragma diag_suppress 1107
#define VECTOR_NAME(name) name##_ptr
#define EMIT_PRAGMA(x) _Pragma(#x)
#define CREATE_VECTOR(name) void * const VECTOR_NAME(name) = (void *)(long)&name
#define PLACE_VECTOR(vector,section) EMIT_PRAGMA(DATA_SECTION(vector,section))
#define PLACE_INTERRUPT(func) EMIT_PRAGMA(CODE_SECTION(func,".text:_isr"))
#define ISR_VECTOR(func,offset) CREATE_VECTOR(func); \
 PLACE_VECTOR(VECTOR_NAME(func), offset) \
 PLACE_INTERRUPT(func)

#ifdef __ASM_HEADER__ /* Begin #defines for assembler */
#define PORT2_VECTOR ".int41" /* 0xFFDA Port 2 */
#else
#define PORT2_VECTOR (41 * 1u) /* 0xFFDA Port 2 */
#endif

T. N. Krnich 229

use the same program in other MSP430s. The last column is a comment which
describes the vector. For example, /* 0xFFDA Port2 */ means the vector is located
at the address 0xFFDA in main memory, but stored at that address is the address num-
ber to the first instruction in the actual interrupt service routine (ISR) for that vector.
That translation work is handled by the MSP430 compiler.

Diagram 71: The typical list of interrupt vector definitions as found at the end of a microcontroller’s
header file.

.

Block of Interrupt Control Logic

Let's now go back to the block of interrupt control logic. It carries out several pro-
cesses. It monitors the state to every IFG bit. When it sees a set flag, it determines
whether or not the

,
then it loads the vector into the CPU, and then it puts the microcontroller into the
active operating mode so it can execute the ISR.

Reset, Non-Maskable (NMI), and Maskable Types of Interruptions

Interruptions are divided into reset, non-maskable, and maskable types of interrup-
tions. All reset flags are bound to the REST_VECTOR, as shown in diagram 71, and it
has the highest priority. It is only used for resetting the microcontroller, and its
request cannot be stopped from interrupting the microcontroller. Furthermore, it can-
not be used for creating and executing an ISR. Since more than one flag is bound to
it, the interrupt system logic uses the reset flag to decide on whether to produce a
BOR, POR, or PUC signal. A routine, inside of , is used for distinguishing
which had caused the reset and then transfers the flow of execution to the proper
subroutine to handle it. That routine is called the handler (see page 211). A
reset is typically caused by an event which has stopped or may possibly stop the
microcontroller from doing its work.

#define PORT2_VECTOR (41 * 1u) /* 0xFFDA Port 2 */
#define PORT1_VECTOR (42 * 1u) /* 0xFFDC Port 1 */
#define ADC_VECTOR (43 * 1u) /* 0xFFDE ADC */
#define USCI_B0_VECTOR (44 * 1u) /* 0xFFE0 USCI B0 Receive/Transmit */
#define USCI_A1_VECTOR (45 * 1u) /* 0xFFE2 USCI A1 Receive/Transmit */
#define USCI_A0_VECTOR (46 * 1u) /* 0xFFE4 USCI A0 Receive/Transmit */
#define WDT_VECTOR (47 * 1u) /* 0xFFE6 Watchdog Timer */
#define RTC_VECTOR (48 * 1u) /* 0xFFE8 RTC */
#define TIMER3_A1_VECTOR (49 * 1u) /* 0xFFEA Timer3_A2 CC1, TA */
#define TIMER3_A0_VECTOR (50 * 1u) /* 0xFFEC Timer3_A2 CC0 */
#define TIMER2_A1_VECTOR (51 * 1u) /* 0xFFEE Timer2_A2 CC1, TA */
#define TIMER2_A0_VECTOR (52 * 1u) /* 0xFFF0 Timer2_A2 CC0 */
#define TIMER1_A1_VECTOR (53 * 1u) /* 0xFFF2 Timer1_A3 CC1-2, TA */
#define TIMER1_A0_VECTOR (54 * 1u) /* 0xFFF4 Timer1_A3 CC0 */
#define TIMER0_A1_VECTOR (55 * 1u) /* 0xFFF6 Timer0_A3 CC1-2, TA */
#define TIMER0_A0_VECTOR (56 * 1u) /* 0xFFE8 Timer0_A3 CC0 */
#define UNMI_VECTOR (57 * 1u) /* 0xFFFA User Non-maskable */
#define SYSNMI_VECTOR (58 * 1u) /* 0xFFFC System Non-maskable */
#define RESET_VECTOR (59 * 1u) /* 0xFFFE Reset [Highest Priority] */

230 Interrupt Handling and Interrupt Vectors

The non-maskable interruption is referred to as the NMI. Like the reset interruption,
its request cannot be blocked from interrupting the microcontroller, but it does not
cause any type of reset. It causes a specific ISR to be executed.

Most events which cause an NMI are operating errors and violations which will not
stop the microcontroller from doing its work, but should be diagnosed and properly
dispositioned with an ISR.

The NMI is divided into system non-maskable interruptions (SNMI) and user non-
maskable interruptions (UNMI). An SNMI is typically caused by an instruction try-
ing to access (read) a vacant address in memory, a JTAG mailbox error, or an error in
reading or writing data into a section of memory made of FRAM technology. A
UNMI is typically caused by an oscillator fault (producing a bad clock signal) or a
signal at the RST/NMI pin, while the pin is in NMI mode.

The maskable interruption, or just simply referred to as an interruption, causes a spe-
cific ISR to be executed. It is the type of interruption which our program is primarily
concerned with. The ISR uses the input signals (located in registers) from peripheral
modules for making decisions, and the results of those decisions are used for produc-
ing output signals (which are driven by registers). The output signals are handled by
the same modules, or other modules, or both. The vectors for these ISRs are shown
by diagram 71 as having a priority of 56 and lower. While the ISR is being executed,
the interrupt system will block requests from all maskable interruptions, but requests
for reset and NMIs will be accepted. It is possible to place an instruction in the ISR to
enable maskable interruptions, and that technique is called nested interruptions.

How the Interruption is Processed

The process for the non-maskable interruption is described here, and it is elaborated
upon by a later chapter. And the specific reset and non-maskable types of interrup-
tions are described later by their own separate chapters.

The status register, program counter, and program execution stack are all involved in
processing an interruption. The actual details, as described here, are not a prerequisite
to writing an ISR, but having the knowledge gives you better contextual understand-
ing.

The status register and program counter register are CPU registers. The status register
contains bitfields used for putting the microcontroller into the various operating
modes and for enabling maskable interruptions. The program counter is a block of

T. N. Krnich 231

CPU logic whose job is to keep track of which instruction is being executed and
which instruction to execute next. It carries out its work by handling the addresses to
those instructions. It uses an instruction register to hold the instruction which the
CPU is executing. It uses the program counter register for storing the address to the
next instruction which the CPU must execute, and it updates the register with the next
address as the CPU steps through our program. For example, the reset system places
the first instruction in the boot program into the program counter before releasing the
microcontroller to the active operating mode.

The program execution stack is a data structure created and placed into main memory
by the MSP430 compiler. When the flow of execution transfers away from the main
flow of instructions, such as to a function, it basically keeps track of the address to
the next instruction in the main flow. That address is where the flow of execution
resumes or returns to after completing the function.

Transfer of Program Execution to the ISR

Execution while inside of the ISR

If the flag is the only one bound to the vector, meaning, it is the only possible source
of interruptions for the vector, then typically the interrupt system will automatically
clear it.

If more than one flag is bound to the vector, then the ISR will have to decide which
flag had caused the interruption, and then transfer the flow to the proper ISR subrou-
tine to handle the event and clear the flag. For example, when distinguishing a chan-
nel flag from other channel flags at a port.

If the ISR had read an interrupt vector register (IVR) to learn which flag had caused
the interruption, the reading process will typically clear the flag.

232 Interrupt Handling and Interrupt Vectors

If the objective of the ISR includes being interrupted by maskable interruptions, then
it may include an instruction that enables such interruptions. That ability is referred
to as nested interruptions.

A subroutine then handles the event. This means the subroutine gets the input data
from some system or peripheral module, uses it to make a decision, the decision pro-
duces a result, and the result is used to produce an output signal. The signal will typi-
cally drive a peripheral module, or update a set of data, or both.

If the objective of the ISR includes changing the operating mode which the flow of
execution returns to after executing the ISR, then it may include an instruction that
changes the status register bits which are stored on the stack.

Transfer of Program Execution from the ISR back to the Low Powered State

Interrupt Prioritization

While the CPU is executing an ISR, the interrupt system is still monitoring for set
flags. If a flag for an NMI gets set, the CPU will be interrupted. If a flag for a
maskable interruption gets set, it will be prioritized with the other flags and handled
after the current ISR has been executed. All interruptions are prioritized by their vec-
tor number.

When a signal sets the flag for a maskable interruption, signals for the same flag will
be ignored until that same flag is cleared. For example, when the flag for channel 0 of
port 1 (P1IFG.0) is set, additional signals which continue in attempting to set that
same flag will be ignored until that flag is cleared.

T. N. Krnich 233

Flags codes which are presented by an interrupt vector register (IVR) are prioritized
by the register. The priority is published by the register's description table. For exam-
ple, an IVR for the flags in a digital I/O port will prioritize the channel flags from
zero to 7 with channel zero being first.

Interrupt Compare Controller (ICC)

The interrupt system is responsible for monitoring interrupt flags, accepting their
requests, and prioritizing those requests. All flags are bound to their own interrupt
vectors. Those vectors are located in the microcontroller's base header file, and they
explicitly define their own priority number. Therefore each flag's priority is defined
by the vector which they are bound to.

Some microcontrollers now include a

234 Interrupt Handling and Interrupt Vectors

Chapter 24

How to Determine which are the Multi-Flagged Vectors

The MSP430 and the programs we develop for it are event-driven. If the event had
set an interrupt flag which is bound to a single flag vector, then typically that vector's
ISR will not need to include instructions which determine which flag had caused the
interruption. On the other hand, if the event had set a flag which is bound to a multi-
flag vector, then that vector's ISR will need to include instructions which determine
which flag had caused the interruption.

For example, let's look at a digital I/O port. The first two ports on a microcontroller
are typically able to interrupt the CPU. They are typically built of eight channels, and
each channel is able to set a flag when it senses an event. Furthermore, a port is
bound to just a single vector, and a vector can only be bound to a single ISR. So we
must take into account that eight flags are bound to a single vector, and the vector is
bound to a single ISR. This means the ISR must include a routine which can deter-
mine which flag had caused the interruption, and then transfer the flow of execution
to the proper subroutine of instructions for clearing the flag and handling its event.

To develop code which searches for the flag and transfers flow to the proper subrou-
tine, we need to know how to determine which are the multi-flagged vectors and how
to find the variable name of the register where the flag is located.

Determining which Vectors are Bound to More than one Flag

To learn which vectors are bound to more than one flag,

Finding the Name of the Register where the Flag is Located

We know that a flag will be in the form of a single bitfield, or a code number, or both.
When it is in the form of a bitfield, it appears as a field in a conventional register.
When it is in the form of a code number, it appears as a set of bitfields in an interrupt
vector register (IVR). A microcontroller will have conventional registers, or interrupt
vector registers, or both for presenting which flag had interrupted the CPU.

236 How to Determine which are the Multi-Flagged Vectors

The following table shows all the interrupt flag names for each vector, but it does not
provide the register name where the flag is located. A name will typically end with
IFG. To find the name of the register where the flag is located, open the microcontrol-
ler's user guide, and then search for the flag name. If you are familiar with the micro-
controller, you will probably already know which system or peripheral module has
the register where the flag is located, then you can start your search from there. If
viewing a PDF of the guide, it’s a simple task to use the PDF viewer’s search tool.

Diagram 72: A typical interrupt vector addresses table as published by a microcontroller’s data sheet. In
this case, it’s for the MSP430FR2433. Although the vector’s name is not shown, its [word] address in main
memory is shown. It can be used as a cross-reference for looking up the vector symbolic constant in the
microcontroller’s header file.

INTERRUPT SOURCE INTERRUPT FLAG SYSTEM
INTERRUPT

WORD
ADDRESS PRIORITY

System Reset
Power up, Brownout, Supply supervisor

External reset RST
Watchdog time-out, Key violation

FRAM access time error
FRAM uncorrectable bit error detection

Software POR, BOR
FLL unlock error

PMMPORIFG, PMMBORIFG, SVSHIFG
PMMRSTIFG

WDTIFG
ACCTEIFG

UBDIFG
SYSRSTIV

FLLUNLOCKIFG

Reset FFFEh 59, Highest

System NMI
Vacant memory access

JTAG mailbox
FRAM bit error detection

VMAIFG
JMBINIFG, JMBOUTIFG

CBDIFG, UBDIFG
Nonmaskable FFFCh 58

User NMI
External NMI
Oscillator fault

NMIIFG
OFIFG

Nonmaskable FFFAh 57

Timer0_A3 TA0CCR0 CCIFG0 Maskable FFF8h 56

Timer0_A3 TA0CCR1 CCIFG1, TA0CCR2 CCIFG2,
TA0IFG (TA0IV) Maskable FFF6h 55

Timer1_A3 TA1CCR0 CCIFG0 Maskable FFF4h 54

Timer1_A3 TA1CCR1 CCIFG1, TA1CCR2 CCIFG2,
TA1IFG (TA1IV) Maskable FFF2h 53

Timer2_A2 TA2CCR0 CCIFG0 Maskable FFF0h 52
Timer2_A2 TA2CCR1 CCIFG1, TA2IFG (TA2IV) FFEEh 51
Timer3_A2 TA3CCR0 CCIFG0 Maskable FFECh 50
Timer3_A2 TA3CCR1 CCIFG1, TA3IFG (TA3IV) FFEAh 49

RTC RTCIFG Maskable FFE8h 48
Watchdog timer interval mode WDTIFG Maskable FFE6h 47

eUSCI_A0 receive or transmit
UCTXCPTIFG, UCSTTIFG, UCRXIFG,

UCTXIFG (UART mode)
UCRXIFG, UCTXIFG (SPI mode)

(UCA0IV)
Maskable FFE4h 46

eUSCI_A1 receive or transmit
UCTXCPTIFG, UCSTTIFG, UCRXIFG,

UCTXIFG (UART mode)
UCRXIFG, UCTXIFG (SPI mode)

(UCA1IV)
Maskable FFE2h 45

eUSCI_B0 receive or transmit

UCB0RXIFG, UCB0TXIFG (SPI mode)
UCALIFG, UCNACKIFG, UCSTTIFG,
UCSTPIFG, UCRXIFG0, UCTXIFG0,
UCRXIFG1, UCTXIFG1, UCRXIFG2,
UCTXIFG2, UCRXIFG3, UCTXIFG3,
UCCNTIFG, UCBIT9IFG (I2C mode)

(UCB0IV)

Maskable FFE0h 44

ADC
ADCIFG0, ADCINIFG, ADCLOIFG,

ADCHIIFG, ADCTOVIFG, ADCOVIFG
(ADCIV)

Maskable FFDEh 43

P1 P1IFG.0 to P1IFG.7 (P1IV) Maskable FFDCh 42
P2 P2IFG.0 to P2IFG.7 (P2IV) Maskable FFDAh 41 Lowest

Reserved Reserved Maskable FFD6h to
FF88h

Signatures

BSL Signature 2 0FF86h
BSL Signature 1 0FF84h

JTAG Signature 2 0FF82h
JTAG Signature 1 0FF80h

Chapter 25

The Reset Interruption

The highest priority interruption is the reset. It is caused by operating faults, errors,
violations, a reset instruction, or just simply a signal from the RST/NMI pin while it
is in reset mode. The word “system” refers to all microcontroller systems and periph-
eral modules. A reset instruction is a line of code in our program, and it is just simply
an instruction that sets a specific reset interruption flag. Keep in mind that an inter-
rupt flag's ability to request an interruption must be enabled by setting the interrupt
enable bit for the flag.

A fault, error, or violation event will or might stop the microcontroller from doing its
work. Therefore, they are of enough concern to justify a system reset.

There are three types of reset interruptions, and they are distinguished by

Although a reset interruption flag has its own vector, and unlike all other vectors, this
vector is not the address to an ISR. It is the address to the first instruction in the boot
program. Consequently, a reset interruption is not used for executing an interrupt ser-
vice routine (ISR). Instead, we use a reset handler, which is written into main(), to
handle the interruption. The interrupt logic uses the reset flag for determining which
reset signal to produce (a BOR, POR, or PUC). After reset, the boot is then executed.

Probably the most well known reset interruption is caused by a

.

Another well known reset interruption is caused by a signal at the RST/NMI pin,
while that pin is in reset mode. The purpose for the RST/NMI pin is to provide a
manual method for a person or peripheral device to produce a BOR signal. If, instead,
the pin is in NMI mode, it will request a non-maskable interruption which triggers an
ISR. Since that later mode does not request a reset, the flow of execution for that
method is explained by a later chapter.

Systems, not peripheral modules, are the primary components which monitor for
events which may cause a system reset. And there are many different types of events

238 The Reset Interruption

which will set a reset interruption flag. All those events can occur during active oper-
ating mode, because everything is on and working. As you progress through the hier-
archy of low powered operating modes, there will be a growing number of those
events which will not be able to occur, because power had been removed from the
system or peripheral module. And as you progress through the hierarchy of fractional
operating modes (LPMX.5), there are much less, and typically only three events will
set a reset interruption flag that was caused by of some type of operating fault or
error: the RST/NMI pin in reset mode, the supply voltage supervisor, and the brown-
out monitoring system. For events which are not caused by faults and can interrupt a
fractional low powered operating mode, their flow is described separately and by a
later chapter. To learn which specific events will cause a reset, and from which modes
they are enabled, see the Operating Modes (page 131) and the Interrupt Vector
Addresses (page 236) sections of the microcontroller's data sheet.

And as a reminder, a reset interruption flag must be enabled so it may request to inter-
rupt the CPU. Each flag has its own enabling bit which can be set or cleared.

Flow for the System Reset Interruption
List 1: The flow of execution for system reset interruption. It may occur while the microcontroller is in any
operating mode, but most may only occur during the active mode. Events which cause this interruption
are in the form of operating faults, errors, violations, a watchdog timer overflow, or a signal from the RST/
NMI pin while in reset mode. Depending on the event, its reset signal forces the microcontroller to start a
reset from the BOR, POR, or PUC.

1.
.

2.

T. N. Krnich 239

3.

4.

5.
6. .
7.

8.
9.

10. .
11.

).

12.
13.

14.

The Reset Fault Handler (RFH)

The reset system is forced to run after a power-up or after an event which forces a
reset. Events which force a reset are in the form of system faults or program execu-

240 The Reset Interruption

tion faults. Power-up and reset events will typically set an interrupt flag showing
what had caused the reset.

The purpose of a reset fault handler (RFH) is to determine which reset flag was set
and then use that information to decide which subroutine must be used to disposition
the event.

If the reset had followed a power-up, typically, no disposition is needed, and the RFH
is by-passed. If the reset was caused by an interruption, typically, a disposition is
needed, so the RFH is entered and a subroutine is executed to handle it.

The action which the disposition causes will depend on what you think must be done,
if anything at all. For example, an LED could be illuminated for some period of time,
or a message could be sent out a communications module, or a routine can be exe-
cuted that carries out sophisticated corrective action, or the disposition could be noth-
ing at all. It really depends on the microcontroller's mission and the features you
develop to carry out that mission.

Be aware that a few reset interruptions will not set a flag. For example, a

.

Also be aware of this. For microcontrollers which offer a fractional low power oper-
ating mode (LPMx.5), a reset flag, typically named is set when exiting
that mode. This is not a flag that a fault handler should check and disposition, since
an exit from some fractional low powered mode is not caused by a fault. When the
MSP430 is interrupted from such a mode, it always emerges through a full reset
(BOR, POR, and PUC). Events which cause such an interruption are expected to

mmediately after they are enabled,
the ISR for the interruption is loaded into the CPU and executed. An instruction in
the ISR then clears the flag. The LPMx.5 interruption is described by a later chapter.

Two reset fault handlers are presented here. The first one uses if() statements for
reading the state of every reset flag in a conventional register. The second one uses a
switch() statement for reading the flag code in an interrupt vector generator (IVG)
register.

To modularize your program, these handlers can be placed inside of a function. It
would not need to return a value, nor would it need to have parameters for taking val-
ues. For example, it could be defined as void resetFaultHandler(void){}, have
its prototype as void resetFaultHandler(void), and be called by an instruction as

T. N. Krnich 241

resetFaultHandler(). The prototype would be placed before main(). The function
definition would be placed after main(). And the function call would be placed
inside of main(), but before maskable interruptions are enabled.

The following reset fault handlers will be placed inside of that resetFaultH-
andler() function.

Reset Fault Handler Based on if() Statements

Use this handler when your microcontroller does not offer an interrupt vector genera-
tor register for getting the code for a reset flag.

When compared to the handler based on a switch(), this one involves more work to
develop because you have to find which flags are set by a system fault, then deter-
mine which registers hold those flags, and then write decision making instructions
that reads every one of those registers. Every statement will also have to clear its own
flag. And if the flag is in a protected register, the register will have to be unlocked.

To learn about which faults cause a reset, see the “System Module Interrupt Vector
Registers” section of the data sheet, and the “System Resets, Interrupts, and Operat-
ing Modes” chapter of the user guide.

Code example 69 defines a reset fault handling function. It is called from inside of
main(). At line 1 is the function's header. It is void of returning data, and it is void of
any parameters.

Code Example 69: A reset fault handler function that is based on if() statements.
.

1){ // reset fault handler function header
2 ; // unlock the PMM registers
3 ; // unlock the MPU registers
4){ // if BOR caused by RST/NMI pin in reset mode
5 ; // clear the flag
6 // .
7 } // end of first disposition routine
8 // if BOR caused by
9 // if BOR caused by
10 // if POR caused by
11 // if PUC caused by
12 // if PUC caused by
13 // if PUC caused by
14 // if PUC caused by n
15 // if PUC caused by
16 // if PUC caused by
17 // if PUC caused by
18 } // end of resetFaultHandler()

The function begins with a couple of instructions which unlock registers. They hold
system reset flags, and they are typically locked from writing access. If a flag was set,
the register must be unlocked to clear it. In this case, the microcontroller has four reg-
isters which contain all the flags we intend to read. Two of them are locked.

On line 2, a power management module control register (is used for
unlocking all the PMM registers. After reading about this register in the user guide,

242 The Reset Interruption

we learn that one bitfield (SVSHE) is set by the reset system, so the unlocking instruc-
tion must take that into account. On line 3, an instruction uses the memory protection
unit control register (MPUCTL0) for unlocking all the MPU registers.

On lines 4 through 7 is the first subroutine, in the form of an if() statement, which
uses an operation for reading a flag and uses the result to decide what to do. The
operation is called the controlling expression. If the result of the expression is 1, the
flow of execution is transferred to the body of the statement. If the result is zero, the
flow is transferred to the next routine on line 8.

The controlling expression is in the form of an operation that reads a single bit for a
flag (in a sixteen bit register (PMMIFG). If the flag is set, the expression
will return 1, and the body will be executed.

At line 5 of the body, an operation clears

The remaining routines on lines 8 through 17 follow the same pattern of development
for each possible reset flag. The bodies of those routines are empty to keep the exam-
ple brief. And the actual register variables and masks may be different for your
microcontroller.

Reset Fault Handler Based on a switch() Statement

Use this handler when your microcontroller does offer a single register for determin-
ing which flag had caused the reset. It is referred to as an interrupt vector register
(IVR). The register is typically called the System Reset Interrupt Vector (SYSRSTIV).

When compared to the previous method,

The code for each flag is published by the microcontroller's data sheet in a table
named System Module Interrupt Vector Registers. A portion of such a table is shown
by diagram 73. It typically has five columns and many rows. The first column shows
the register's variable name. In this case, its name is SYSRSTIV. The second column
shows the address in main memory where the register is located, but we do not need
it. The third column shows a list of reset events, their masks, and a brief description.
The forth column, titled Value, is the code that the interrupt system will write into the
register to identify the flag which caused the reset. That is the code, in hexadecimal
notation, that our reset handler will be reading. Important: notice that the set of codes
are all even numbers, except for zero. That means we can use the
__even_in_range() intrinsic function for reading the register.

T. N. Krnich 243

Diagram 73: Portion of a System Module Interrupt Vector Registers table as published by the microcon-
troller’s data sheet. Use it for

Code example 70 defines a reset fault handling function that is based on a switch().
It is used for reading the reset flag codes in the register, an interrupt vector
register.

Code Example 70: A single register reset fault handler. Use this handler when your microcon-
troller does offer an interrupt vector register (IVR) for determining which interrupt flag had
caused a system reset. The register is typically

1 // Reset fault handler function header
2){
3 : // Brownout (BOR)
4
5
6 : // RSTIFG RST/NMI (BOR)
7
8
9 : // Security violation (BOR)
10 utine
11
12 E: // SVSHIFG SVSH event (BOR)
13
14
15 // See description on page 244
16 } // End of switch statement
17 } // End of resetFaultHandler()

This reset fault handling function would be called by an instruction from inside of
main(), and this definition would be placed outside of and after main(). The func-
tion's prototype would be placed before main().

At line 1 is the function's header. It is void of returning data, and it is void of any
parameters. The body of the function is in the form of a multiple selection switch()
statement.

At line 2 is the beginning of the switch(). Instead of just simply using the register's
variable name (SYSRSTIV) as the controlling expression to get the code, we use the

 function, as explained on page 208. It will tell the MSP430
compiler to create an optimized data structure out of the switch(). For the second
parameter (range), we use a code number which is the number in the range
of code numbers, but we could have used the flag's mask.

INTERRUPT
VECTOR REGISTER ADDRESS INTERRUPT EVENT VALUE PRIORITY

SYSRSTIV,
System Reset 019Eh

No interrupt pending 00h
Brownout (BOR) 02h Highest

RSTIFG RST/NMI (BOR) 04h
PMMSWBOR software BOR (BOR) 06h

LPMx.5 wakeup (BOR) 08h
Security violation (BOR) 0Ah

Reserved 0Ch
SVSHIFG SVSH event (BOR) 0Eh

Reserved 10h
Reserved 12h

244 The Reset Interruption

Reading the register will automatically clear it and the flag to zero. The remaining
lines of instructions are in the form of different subroutine cases, where each case
handles the code for a specific reset flag. If the case code is equal to the controlling
expression, the case is selected and then executed, and when finished, the flow of
execution breaks out of the switch().

On line 15 is another

For brevity, the code example presents only four cases which make up the switch().

Reset Caused by a Watchdog Timer Overflow

The watchdog can be configured to produce a reset or a non-maskable interruption
(NMI). When it is configured to be in reset mode, it will produce a reset at PUC sig-
nal. When in NMI mode, an overflow can be used for triggering an ISR.

The watchdog is introduced by Chapter 13 on page 89, and the watchdog timer han-
dler is described on page 178.

Chapter 26

How to Write an Interrupt Service Routine (ISR)

Syntax is the set of rules and principles in a programming language which governs
the arrangement of operators and operands to create well formed instructions. In this
case, we are interested in the syntax for an interrupt service routine (ISR).We’ll need
to know that syntax before progressing to the next two chapters, which go into detail
about NMIs and maskable interruptions. Interruptions are designed and intended to
execute ISRs.

There are three types of ISRs which we must be aware of. The first one is
the con-ventional ISR, and it is used for handling NMIs and maskable interruptions.
The sec-ond ISR is the built-in default ISR. It has the same syntax as the
conventional ISR, but it is one which we do not write; it is automatically written for
vectors which do not have a conventional ISR, as will be explained. The last one is
the custom default ISR. Its purpose is to bind more than one vector to a single ISR.
Those last two ISRs are also referred to as trap ISRs.

The Conventional ISR

When a system module or peripheral module is enabled to produce CPU interrup-
tions, a specific type of event at that module will then be able to set an interrupt flag
(IFG) which is unique to that event. The flag then produces a request for interruption
signal (IRQ), which is sensed by the interrupt system. The system then uses the flag
to select the proper ISR to service the event. A relationship between the flag and the
ISR must be established to make that happen. That relationship is created with an
interrupt vector and a vector #pragma preprocessor directive.

246 How to Write an Interrupt Service Routine (ISR)

The format for an ISR function is similar to any other conventional C language func-
tion, but the function's signature (a combination of the function's name and its param-
eters) is slightly different.

An ISR's signature starts with the MSP430 intrinsic key word __interrupt, and it is
followed by the function's return type. Older MSP430 compilers require the double
lower line prefix, while newer compilers do not require any prefix. An ISR does not
return data, so its return type is always void. Following the return type is the func-
tion's name. For the name, you may use any name as an identifier which complies
with the C language and the MSP430 compiler. And finally, an ISR function is
always void of parameters. We cannot pass data into an ISR.

Following the ISR signature is a block of ISR instructions which form the body of the
ISR. These instructions clear the flag and handle the event which had caused the
interruption.

Every ISR ends with the return from interrupt (RETI) instruction (that was intro-
duced on page 232). The MSP430 C compiler will automatically insert it as the last
instruction in the body of the ISR, so we do not have to write it. It puts the microcon-
troller back into the operating mode from where it was interrupted and reloads the
next program instruction into the CPU program counter register. RETI will always
become the last instruction of the body.

The following code example shows the syntax for the conventional ISR.

Code Example 71: Syntax for the conventional ISR.

1 //Bind this vector to the following ISR
2 //Signature for the ISR function
3
4 // End of ISR

One line 1 are two operands and an operator. The first operand is the

On line 2 is the ISR function signature. It is specified (declared) with

The name of the ISR function is any name you choose. In the example, it appears as
ISR_NAME. It only has to comply with the C language and MSP430 compiler syntax.

T. N. Krnich 247

Line 2 ends with the

Line 3, and any other needed lines, is the

The following example shows code for an ISR which will handle an interruption at a
digital I/O port. It’s for all the channels in Port 1. The body of the ISR will have to
determine which channel had set the flag (page 207), then clear it, and then execute a
subroutine which handles the event.

Code Example 72: The syntax for an interrupt service routine that will handle interruptions
from Port 1.

 .

1 //Bind
2 //Declaring the ISR: any valid name can be used
3 //Opening bracket to the ISR block
4
5 //Closing bracket to the ISR block

Built-in Default Interrupt Service Routine (ISR)

In a scenario where one or more modules have been enabled to produce CPU inter-
ruptions, and we have not written ISRs to handle those interruptions, the MSP430
compiler will automatically create a default ISR function for them. This is a feature
built into the MSP430 compiler.

But keep in mind that this default ISR will only execute a single instruction. It puts
the microcontroller into Low Power Operating Mode 0 (LPM0). That mode will typ-
ically just turn off the main clock signal to all peripheral modules, systems, and the
CPU.

To verify the actual operating mode,
 It contains a

comment that will state which operating mode the default ISR will put the microcon-
troller into.

248 How to Write an Interrupt Service Routine (ISR)

Customized Default Interrupt Service Routine (ISR)

The alternative to the built-in default ISR is a customized default ISR. There are two
types. The first type is used for handling a specific set of interrupt vectors. The sec-
ond type is used for handling all interrupt vectors which are not handled by an ISR.

When written in C, both types will automatically include the RETI instruction which
returns the flow of execution back to the operating mode from where the ISR was
interrupted.

From a coding perspective, the syntax for these two types of ISR functions is just like
the .

Use the first type of ISR, shown below, to handle a specific set of vectors. You just
simply use a comma separated list of vectors to form the set. There is no comma after
the last vector. The first line of the example ends with a comma and ellipses (…),
meaning, additional vectors may follow. The ellipses is not part of the final syntax
which completes the instruction. The name of the ISR is , but it can be

.

Code Example 73: The custom default ISR that will handle a specific set of interrupt vectors.

1
2 //declaring the custom default ISR
3 { //opening bracket to the ISR block
4 //block of ISR instructions
5 } //closing bracket to the ISR block

Use the second type of ISR for collecting all unused vectors into a single ISR, we just
use the unused_interrupts intrinsic keyword as the name for the vector.

Code Example 74: Declaring a custom defaut ISR that will handle all interrupt vectors which
are not handled by an ISR. .

1
2
3 { //opening bracket to the ISR block
4
5 } //closing bracket to the ISR block

Like the conventional ISR function, you may choose any
 .

Chapter 27

Non-Maskable Interruption (NMI)

Next in priority, after the reset interruption, is the non-maskable interruption (NMI).
The events which cause an NMI are similar to the events which cause a reset inter-
ruption. Those events are operating faults, errors, and program execution violations.
But what distinguishes the NMI events from reset events is one characteristic. Events
which cause an NMI will typically not stop the microcontroller from doing its work.
They are most probably recoverable without any reset. But they are of enough con-
cern to justify the second highest priority interruption which executes an ISR to prop-
erly disposition the fault causing event.

One type of recoverable fault event, for example, is an oscillator fault. It will proba-
bly cause errors in flow of execution, so you are going to want to use an ISR to pause
the microcontroller until a stable clock signal returns (see page 182).

The RST/NMI pin is a physical terminal on the microcontroller's case. It is used for
producing a non-maskable interruption signal. But that signal can be used for trigger-
ing a brown-out reset (BOR) or for executing a specific ISR. When the pin is config-
ured to reset mode, it produces an NMI that causes a BOR. When it is configured to
NMI mode, it produces an NMI that triggers a specific ISR. The pin provides an
external signaling point of high priority where the microcontroller can be manually
restarted or for triggering an ISR.

The interrupt flag for an NMI will typically be used for executing a conventional
interrupt service routine (ISR). However, there are a few NMI flags which can trigger
either an ISR or a reset. For example, the NMI flag for a FRAM uncorrectable bit
error. That flag can be the trigger for an ISR or a reset. For it to cause a reset, another
bitfield must be set; it's called the Enable Power-Up Clear (PUC) Reset bit
(UBDRSTEN).

There are two classes of NMIs.

System NMIs are in the form of

The flow of execution for an NMI is like the flow for a maskable interruption, the
only distinguishing differences are the NMIs have higher priorities, and they cannot
be blocked from interrupting the CPU. It can only be interrupted by another NMI

250 Non-Maskable Interruption (NMI)

with a higher priority or a reset interruption. Typically, like all other interrupt flags, a
flag for an NMI must be enabled through its own unique interrupt enable bit.

And finally, an NMI can

 It contains a list of all the NMI flags for a
specific microcontroller.

Flow for the Non-Maskable Interruption (NMI)

The sequence of events which lead up to and which occur during and after a non-
maskable interruption (NMI) are shown by List 2. Some of the events are produced
by systems built into the microcontroller. Other events are caused by program
instructions. In either case, the source of the event is implied when not stated.

The process presents a scenario where the flow of execution begins when it enters the
main() function because of a power-up event. The last instruction in main() puts the
microcontroller into a low powered operating mode.

NMIs are predominately caused by operating faults and violations, so they typically
occur while the microcontroller is in the active operating mode (AM). Some NMIs
may occur during a low powered operating mode, and fewer may occur during a frac-
tional low powered mode. To keep the process example simple, the NMI will wake
the microcontroller from some low powered mode. It doesn't matter which one. But it
will not be a fractional low powered mode (LPMx.5) because that is a slightly more
complicated process. An interruption from a fractional mode will be explained by
Chapter 29 on page 279.

Once the NMI interrupts the microcontroller, the interrupt system goes to work; it
selects the proper ISR and then loads it in the CPU where it is executed. After the
CPU has gone through the ISR, the microcontroller is automatically put back into the
low powered mode from where it was interrupted.

List 2: The flow of execution for the non-maskable interruption (NMI).

1. .
2. While the flow of execution is in the main() function, the following instructions are exe-

cuted:
•

T. N. Krnich 251

•

3. While the microcontroller is in a low powered mode:
•

4. When an event occurs, it

5. .
6. The flag produces a .
7. Since the interruption is non-maskable, the request is .
8. The interrupt system then executes five basic routines.

•

9. The microcontroller is now in the
.

10. The CPU now executes the ISR. While inside of the ISR:
•

11. When the flow of execution reaches the last instruction in the ISR, the

252 Non-Maskable Interruption (NMI)

12. The last instruction in the ISR is called the return from interrupt (RETI). It simultaneously
executes two stack operations (page 232).
•

Non-Maskable ISR Examples

Presented here are non-maskable interruptions (NMIs) that will wake up the micro-
controller from low powered mode zero (LPM0) and then tell the CPU to execute a
specific interrupt service routine (ISR). Once the CPU is finished with the ISR, the
microcontroller is automatically put back to sleep in LPM0.

As a reminder, what distinguishes a non-maskable from a maskable interruption is
that a flag set by a non-maskable interrupt request (IRQ) signal cannot be blocked by
the general interrupt enable (GIE) bit. That bit is located in the CPU's status register,
and it will only block requests from maskable interruptions.

Three examples are presented. One is of a main() function. It configures the micro-
controller so it will be able to execute the non-maskable ISR. The remaining two
examples are of the ISRs. Since the flag for this particular interruption is in a register
that has other flags, the ISR will have to determine which flag had made the interrup-
tion and then run the subroutine for that flag. This means two programming tech-
niques are available to us for determining the flag and for directing the flow of
execution into the proper ISR subroutine. One involves the if() selection statement,
and the other involves the switch() selection statement. Therefore, one ISR example
uses the if() selection and the other uses the switch() selection.

Here's how the set of examples work.

Although the examples can be used on all MSP430 microcontrollers with little or no
changes, we’re going to use the MSP430FR2433 which is built into the MSP-
EXP430FR2433 development kit. It provides a push button switch, labeled as S3,
that is connected to the RST/NMI pin, and it provides an LED connected to P1.0.

T. N. Krnich 253

Shown by diagram 74 is the circuit schematic for the NMI input signal and output
signal that will be handled by the two ISR examples, described later in this section.

Diagram 74: Schematic for examples 75, 76, and 77. The supply
voltage (VCC) and a push button switch (S3) are connected to the
RST/NMI pin of an MSP430. The pin is configured to NMI mode and
to set a flag when the voltage signal at the pin falls from VCC to zero.
An LED is connected to channel 0 of port 1 (P1.0). When the switch is
closed, it pulls the voltage at the pin to zero. That sets the NMIIFG. An
ISR then toggles the signal at P1.0. R1, R2, and C are 47k Ω, 470 Ω,
and 1,000 pF respectively.

The microcontroller appears with only the two relevant
pins. One is the RST/NMI pin, and the other is the P1.0
pin. A voltage potential is sent through a resistor-capacitor (RC) signal interface cir-
cuit and appears at the RST/NMI pin. The potential is at the same level as the supply
voltage (VCC). A thorough explanation of the interface circuit is beyond the scope of
this discussion, but its purpose isn't. A later volume will go into the design details.

The RC circuit acts as a filter that converts an abrupt change in voltage level into a
gradual change. In other words,

y

After a power-up, the voltage potential at the RST/NMI pin becomes equal to VCC,
and it will be held there by the power supply without draining current into the chan-
nel. When the switch is closed, it creates a short circuit to ground that creates a falling
potential difference experienced by the pin. Inside of the microcontroller and behind
the pin, the input signal monitoring circuit senses the change of voltage from VCC to
ground, so it sets a flag that sends an interrupt request signal (IRQ) to the interrupt
system. The flag's request can't be masked, so it's immediately accepted. The system
then uses the flag's ISR vector to select the proper ISR, then loads the ISR's first
instruction into the CPU, and then puts the microcontroller into active mode so the
ISR will be executed. The ISR then tells the CPU to toggle the output signal at P1.0
to change the state of the LED. R2 reduces the output voltage signal to protect the
LED.

main() Function for ISR Code Examples 76 and 77

The purpose of main() is to put the RST/NMI pin into NMI mode, then configure
P1.0 to drive the LED, and then put the microcontroller into LPM0. Both ISR code
examples, 76 and 77, use this same main() function. Only their IRSs are different,
since they present two different flag determing techniques. Therefore, the main()
function is separately described here and shown by code example 75.

The routine in main() is made with just enough instructions to prepare the microcon-
troller to execute the ISR, no more and no less. But it still follows the event-driven

LED

GND

S3C

R1

R2

RST/NMI

MSP430

P1.0

VCC

254 Non-Maskable Interruption (NMI)

pattern of program development that was introduced on page 120. The routine begins
on line 3 with an instruction that puts the watchdog on hold.

Code Example 75: The main() function for code examples 76 and 77. It puts the watchdog on hold, puts
the RST/NMI pin into NMI mode, configures P1.0 to drive an LED, unlocks port channels, and then puts the
microcontroller into low power mode 0.

1 // Base header file (see page 146)
2 // Begin main() (see page 99)
3 // Stop the watchdog timer (page 94)
4 ; // Set RST/NMI pin into NMI mode
5 ; // Set NMI interrupt to a falling edge
6 // Set to enable NMI flag interruptions
7 ; // Set P1.0 to output direction
8 // Clear P1.0 output to logical low
9 // Unlock port channels
10 // Put in low powered operating mode 0
11 // Never reached
12 } // End main()

Putting the RST/NMI Pin into NMI Mode

Instructions on lines 4, 5, and 6 put the RST/NMI pin into NMI mode. We first begin
by reading the microcontroller's user guide to learn how the pin works, how to con-
figure it, and which registers and bitfields are involved. It can be found on the micro-
controller's home page at www.ti.com, and in this case, its document number is
SLAU445. The guide has a dedicated section to this topic called Reset Pin (RST/
NMI) Configuration. Two registers are involved. The Special Function Register
Reset Pin Control Register (SFRRPCR), as shown by diagram 75, and the Special
Function Register Interrupt Enable Register 1 (SFRIE1), as shown by diagram 76.
Both names are clumsily recursive, but that's what you can expect. We also learn that
most of the bitfields can be used as is. Meaning, they do not have to be changed.

After searching in the adjacent register tables, we will find the bitfield that enables
our flag (NMIIFG). The field is called the NMI Pin Interrupt Enable Flag (NMIIE), and
it is located in the Special Function Register Interrupt Enable Register 1 (SFRIE1).
That register also has bitfields for other flag enabling bits. So on line 6 of main(), an
instruction sets the NMIIE bit in the SFRIE1 register to enable the NMI interrupt flag
(NMIIFG).

T. N. Krnich 255

Diagram 75: Special Function Register Reset Pin Control Register as published by the user guide.

Diagram 76: Special Function Register Interrupt Enable Register 1 as published by the user guide.

As will be elaborated upon later, a multi-flagged vector will be used for binding the
NMIIFG flag to the ISR. In this case, there are two flags which are bound to that vec-

SFRRPCR Register
15 14 13 12 11 10 9 8

Reserved
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0
Reserved SYSFLTE SYSRSTRE SYSRSTUP SYSNMIIES SYSNMI

r0 r0 r0 rw-1 rw-1 rw-1 rw-0 rw-0
SFRRPCR Register Description

Bit Field Type Reset Description
15-5 Reserved R 0h Reserved. Always reads as 0.
4 SYSFLTE RW 1h Reset pin filter enable

0b = Digital filter on reset pin is disabled
1b = Digital filter on reset pin is enabled

3 SYSRSTRE RW 1h Reset pin resistor enable
0b = Pullup or pulldown resistor at the RST/NMI pin is disabled
1b = Pullup or pulldown resistor at the RST/NMI pin is enabled

2 SYSRSTUP RW 1h Reset resistor pin pullup/pulldown
0b = Pulldown is selected
1b = Pullup is selected

1 SYSNMIIES RW 0h NMI edge select. This bit selects the interrupt edge for the NMI when SYSNMI =
1. Modifying this bit can trigger an NMI. Modify this bit when SYSNMI = 0 to
avoid triggering an accidental NMI.
0b = NMI on rising edge
1b = NMI on falling edge

0 SYSNMI RW 0h NMI select. This bit selects the function for the RST/NMI pin.
0b = Reset function
1b = NMI function

SFRIE1 Register
15 14 13 12 11 10 9 8

Reserved
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0
JMBOUTIE JMBINIE Reserved NMIIE VMAIE Reserved OFIE WDTIE

rw-0 rw-0 r0 rw-0 rw-0 rw-0 rw-0 rw-0
SFRIE1 Register Description

Bit Field Type Reset Description
15-8 Reserved R 0h Reserved. Always reads as 0.
7 JMBOUTIE RW 0h JTAG mailbox output interrupt enable flag

0b = Interrupts disabled
1b = Interrupts enabled

6 JMBINIE RW 0h JTAG mailbox input interrupt enable flag
0b = Interrupts disabled
1b = Interrupts enabled

5 Reserved RW 0h Reserved.
4 NMIIE RW 0h NMI pin interrupt enable flag

0b = Interrupts disabled
1b = Interrupts enabled

3 VMAIE RW 0h Vacant memory access interrupt enable flag
0b = Interrupts disabled
1b = Interrupts enabled

2 Reserved R 0h Reserved. Always reads as 0.
1 OFIE RW 0h Oscillator fault interrupt enable flag

0b = Interrupts disabled
1b = Interrupts enabled

0 WDTIE RW 0h Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for
interval timer mode. It is not necessary to set this bit for watchdog mode.
Because other bits in SFRIE1 may be used for other modules, it is
recommended to set or clear this bit using BIS.B or BIC.B instructions, rather
than MOV.B or CLR.B instruction.
0b = Interrupts disabled
1b = Interrupts enabled

256 Non-Maskable Interruption (NMI)

tor. The other one is the oscillator fault interrupt flag (OFIFG). To keep the main()
example brief, an instruction that enables that flag (OFIE) is omitted.

Configuring P1.0 to Drive the LED

Lines 7 and 8 of main(), on page 254, configure channel 0 of port 1 to drive the LED.
We again refer to the user guide, but this time to learn how to produce an output sig-
nal at P1.0. The chapter we need to read is called Digital I/O. We learn that most reg-
isters and their bitfields can be used as is, and that we are only concerned with two
registers. One is the Port 1 Direction register (P1DIR), and the other is the Port 1 Out-
put register (P1OUT). Since the fields in port registers do not have bitfield names, we'll
be using the standard bits for setting and clearing bits in those registers (page 47).

Diagram 77: The Port x Direction Register as published by the user guide. The name PxDIR is just simply
an abstraction for all port direction registers. Each bitfield controls a channel in port number x. When
using the register variable in our program, we just simply substitute the port number for x. For example,
P1DIR is the variable for the port 1 direction register.

Diagram 78: The Port x Output Register as published by the user guide. The name PxOUT is just simply
an abstraction for all port output registers. Each bitfield controls a channel in the port. Like the port direc-
tion register variable, when using this register variable in our program, we just simply substitute the port
number for x. For example, P1OUT is the variable for the port 1 output register.

Final Instructions for main()

While reading the Digital I/O chapter, we also learned that this microcontroller must
have its port channels unlocked before usage. Therefore, on line 9 of main() the
instruction unlocks the port channels (page 201).

PxDIR Register
7 6 5 4 3 2 1 0

PxDIR
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

P1DIR Register Description
Bit Field Type Reset Description
7-0 PxDIR RW 0h Port x direction

0b = Port configured as input
1b = Port configured as output

PxOUT Register
7 6 5 4 3 2 1 0

PxOUT
rw rw rw rw rw rw rw rw

PxOUT Register Description
Bit Field Type Reset Description
7-0 PxOUT RW Undefine

d
Port x output
When I/O configured to output mode:
0b = Output is low.
1b = Output is high.
When I/O configured to input mode and pullups/pulldowns enabled:
0b = Pulldown selected
1b = Pullup selected

T. N. Krnich 257

On line 10, the instruction puts the microcontroller into a low powered operating
mode zero (page 222), and on line 11 is the return statement. In our programming
model, the return instruction should never be reached by the flow of execution. But it
is there as a good program development practice (page 100).

ISR which uses the if() Selection Statement to Determine the NMI Flag

Use the if() selection statement in the ISR when the flags for an NMI vector are
only available as bitfields in a conventional register. This technique was first intro-
duced on page 207.

The ISR's Behavior

This example is a continuation of the main() function in code example 75, on
page 254. That function prepares the microcontroller for work. It

Here's what we want the ISR to do.

.

Writing the ISR

Here's how to write that ISR. We begin with knowing that the flag for the RST/NMI
pin, while in NMI mode, is NMIIFG and it is inside of the SFRIFG1 register. We
learned about all that from the Reset Pin (RST/NMI) Configuration section of the
microcontroller's user guide.

Getting the Vector's Name

Now we need to get the vector's name for that NMIIFG flag.

Remember that this pin can be put into a
mode that triggers a system reset or a mode that triggers a non-maskable request for
an ISR. In the Word Address column is the address to the vector in main memory. It
shows address number FFFAh for the flag's vector. But it's for two flags: the non-

258 Non-Maskable Interruption (NMI)

maskable interrupt flag (NMIIFG) and the oscillator fault interrupt flag (OFIFG). Next,
we open the microcontroller's base header file (described on page 45), and at the end
of that file is a section that defines all the microcontroller's vectors. An image of that
section is shown by diagram 71 on page 229. By using the address number 0xFFFA as
a cross-reference, we can look up the symbolic name for the vector. In this case, it is
UNMI_VECTOR.

Binding the Vector to the ISR

We can now write the ISR. It's shown by code example 76. It starts at line 13, since it
is the continuation of the program started in code example 75, on page 254.

On line 13 we assign
g

 .

Code Example 76: The non-maskable ISR which uses if() selection statements. It is preceded by the
main() function shown by code example 75. A signal at the RST/NMI pin, while in NMI mode, sets a flag.
Since the vector for this ISR is bound to two different flags, the statements determine which flag is set, and
then transfers the flow into their body where the flag is cleared and the event is handled. If the NMIIFG is
set, its flag is cleared and the output signal at P1.0 is toggled once. If the OFIFG is set, an oscillator fault
handler (page 184) manages the fault and clears the flag.

13 // Bind this vector to the ISR
14 // Signature for the ISR
15 // If NMIIFG is set, then
16 0; // Toggle P1.0 (LED)
17 ; // Clear NMIIFG
18 } // End if()
19 // If OFIFG is set, then
20 4)
21 } // End if()
22 } // End of ISR

The ISR's Signature

On line 14 is the signature for our ISR. It is specified with the keyword,
and it is further specified as being void of any return statement and void of any
parameters. ISRs must always have those voids. The name for this ISR function is
UNMI_ISR. It can be any name we choose, but in compliance with the C language. The
line ends with the open bracket that delimits the beginning of the function's body.

The First if() Selection Statement

On line 15 is the beginning of the first if() selection statement. It

. On line 17
the NMIIFG bitfield in the SFRIFG1 register is cleared. On line 18 is the closing
bracket for this if() statement.

T. N. Krnich 259

Diagram 79: The Special Function Register Interrupt Flag 1 register as published by the user guide.

The Second if() Selection Statement

On line 19 is the second if() statement which is meant to handle an oscillator fault,
and is the second flag for this vector. It makes a decision

Be aware that for brevity, the main() example does not include an instruction
that enables the oscillator fault interupt flag (OFIFG).

Returning the Flow of Execution Back to where it was Interrupted

On line 22 is the closing bracket for the ISR function. When the flow of execution
passes through this point, the microcontroller is automatically put back into the low

SFRIFG1 Register
15 14 13 12 11 10 9 8

Reserved
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0
JMBOUTIFG JMBINIFG Reserved NMIIFG VMAIFG Reserved OFIFG WDTIFG

rw-(1) rw-(0) r0 rw-0 rw-0 r0 rw-(1) rw-0
SFRIFG1 Register Description

Bit Field Type Reset Description
15-8 Reserved R 0h Reserved. Always reads as 0.
7 JMBOUTIFG RW 1h JTAG mailbox output interrupt flag

0b = No interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is
cleared automatically when SYSJMBO0 has been written with a new message to
the JTAG module by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is
cleared automatically when both SYSJMBO0 and SYSJMBO1 have been written
with new messages to the JTAG module by the CPU. This bit is also cleared
when the associated vector in SYSUNIV has been read.
1b = Interrupt pending, SYSJMBOx registers are ready for new messages. In 16-
bit mode (JMBMODE = 0), SYSJMBO0 has been received by the JTAG module
and is ready for a new message from the CPU. In 32-bit mode (JMBMODE = 1),
SYSJMBO0 and SYSJMBO1 have been received by the JTAG module and are
ready for new messages from the CPU.

6 JMBINIFG RW 0h JTAG mailbox input interrupt flag
0b = No interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is
cleared automatically when JMBI0 is read by the CPU. When in 32-bit mode
(JMBMODE = 1), this bit is cleared automatically when both JMBI0 and JMBI1
have been read by the CPU. This bit is also cleared when the associated vector
in SYSUNIV has been read
1b = Interrupt pending, a message is waiting in the SYSJMBIx registers. In 16-bit
mode (JMBMODE = 0) when JMBI0 has been written by the JTAG module. In
32-bit mode (JMBMODE = 1) when JMBI0 and JMBI1 have been written by the
JTAG module.

5 Reserved R 0h Reserved. Always reads as 0.
4 NMIIFG RW 0h NMI pin interrupt flag

0b = No interrupt pending
1b = Interrupt pending

3 VMAIFG RW 0h Vacant memory access interrupt flag
0b = No interrupt pending
1b = Interrupt pending

2 Reserved R 0h Reserved. Always reads as 0.
1 OFIFG RW 1h Oscillator fault interrupt flag

0b = No interrupt pending
1b = Interrupt pending

0 WDTIFG RW 0h Watchdog timer interrupt flag. In watchdog mode, WDTIFG self clears upon a
watchdog timeout event. The SYSRSTIV can be read to determine if the reset
was caused by a watchdog timeout event. In interval mode, WDTIFG is reset
automatically by servicing the interrupt, or can be reset by software. Because
other bits in SFRIFG1 may be used for other modules, it is recommended to set
or clear WDTIFG by using BIS.B or BIC.B instructions, rather than MOV.B or
CLR.B instructions.
0b = No interrupt pending
1b = Interrupt pending

260 Non-Maskable Interruption (NMI)

powered mode from where it was interrupted. That return code is automatically
added by the MSP430 compiler (see RETI on page 232).

ISR which uses the switch() Selection Statement to Determine the NMI Flag

Use the switch() selection statement in an ISR when the flags for its vector are
available as code numbers in an interrupt vector register (IVR). This technique was
first introduced on page 208.

The ISR's Behavior

Like the previous ISR example, this one is also a continuation of the main() function
in code example 75 on page 254. That function prepares

.

Here's what we want the ISR to do.

 .

Writing the ISR

By reading the Reset Pin (RST/NMI) Configuration section of the microcontroller's
user guide, we learned that the flag for the RST/NMI pin, while in NMI mode, is
NMIIFG and it is inside of the SFRIFG1 register (shown on page 259).

Getting the Vector's Name

The same technique that was described earlier (on page 257) is used to get vector's
name. We basically used interrupt vector addresses table (diagram 72 on page 236) as
published by a microcontroller's data sheet to get the vector's address, and then we
used the address and the microcontroller's base header file (page 45) to look up the
definition for the vector. So just like the previous example, its name is UNMI_VECTOR.

Binding the Vector to the ISR

T. N. Krnich 261

On line 13 we assign UNMI_VECTOR to the #pragma vector preprocessor directive.
That instruction tells the MSP430 C compiler to bind this vector to the following
function. That function is specified by the MSP430 intrinsic keyword __interrupt.

Code Example 77: The non-maskable ISR which uses the switch() selection statement. It is a continua-
tion of the main() function shown by code example 75 on page 254.

13 // Bind this vector to the ISR
14 // ISR signature
15 // Begin switch() statement
16 // Case for a set NMIIFG
17 // Toggle P1.0 (LED)
18 // Exit switch()
19 : // Case for a set OFIFG
20
21 // Exit switch()
22 // See description on page 244
23 } // End of switch() statement
24 } // End of ISR

The ISR's Signature

On line 14 is the signature for our ISR. Like all other ISR signatures, it is specified
with the __interrupt keyword, and it is further specified as being void of any
return statement and void of any parameters. ISRs must always have those voids.

 The line ends with the open bracket that
indicates the beginning of the function's body.

Getting the IVR Register Variable and it Codes

To write the switch(), we are going to need the IVR's register variable and the flag
code numbers it presents.

We begin at the microcontroller's user guide.

But all that section tells us is that there are three IVRs, their register variable names,
when our program reads the registers, when read, the registers automatically clear the
pending flag to zero, and that those registers present flags for a reset, system NMI,
and for a user NMI. We now have to refer to other sections of the user guide to deter-
mine which IVR keeps track of the user NMIs. It turns out, for our microcontroller,
that the User NMI Vector Register (SYSUNIV) is the one we are looking for, as shown
below by diagram 80. That is the register variable name we'll need for writing the
switch() statement for our ISR.

Notice that the register description for SYSUNIV does not tell us the flag code num-
bers. Instead, it tells us to read the microcontroller's data sheet to get those numbers.

262 Non-Maskable Interruption (NMI)

So we open up the data sheet and search the PDF for the word SYSUNIV, and we find it
inside of a table about interrupt vector registers. That table is shown by diagram 81.

Diagram 80: The SYSUNIV register table and description as published by a user guide. It is the interrupt
vector register that presents user NMI flag code numbers for the MSP430 FR2xx and FR4xx family of micro-
controllers.

Diagram 81: Current generations of microcontrollers use a system module for handling interruptions.
The module typically uses a set of interrupt vector registers for presenting the pending interrupt flag.
Shown here is a table of the interrupt vector registers, as published by the microcontroller’s data sheet.

SYSUNIV Register
15 14 13 12 11 10 9 8

SYSUNIV
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0
SYSUNIV

r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSUNIV Register Description
Bit Field Type Reset Description
15-0 SYSUNIV R 0h User NMI vector. Generates a value that can be used as address offset for fast

interrupt service routine handling. Writing to this register clears all pending user
NMI flags.
See the device-specific data sheet for a list of values.

System Module Interrupt Vector Registers
INTERRUPT VECTOR

REGISTER ADDRESS INTERRUPT EVENT VALUE PRIORITY

SYSRSTIV, System Reset 015Eh

No interrupt pending 00h
Brownout (BOR) 02h Highest

RSTIFG RST/NMI (BOR) 04h
PMMSWBOR software BOR (BOR) 06h

LPMx.5 wake up (BOR) 08h
Security violation (BOR) 0Ah

Reserved 0Ch
SVSHIFG SVSH event (BOR) 0Eh

Reserved 10h
Reserved 12h

PMMSWPOR software POR (POR) 14h
WDTIFG watchdog time-out (PUC) 16h
WDTPW password violation (PUC) 18h

FRCTLPW password violation (PUC) 1Ah
Uncorrectable FRAM bit error detection 1Ch

Peripheral area fetch (PUC) 1Eh
PMMPW PMM password violation (PUC) 20h

FLL unlock (PUC) 24h
Reserved 22h, 26h to 3Eh Lowest

SYSSNIV, System NMI 015Ch

No interrupt pending 00h
SVS low-power reset entry 02h Highest

Uncorrectable FRAM bit error detection 04h
Reserved 06h
Reserved 08h
Reserved 0Ah
Reserved 0Ch
Reserved 0Eh
Reserved 10h

VMAIFG Vacant memory access 12h
JMBINIFG JTAG mailbox input 14h

JMBOUTIFG JTAG mailbox output 16h
Correctable FRAM bit error detection 18h

Reserved 1Ah to 1Eh Lowest

SYSUNIV, User NMI 015Ah

No interrupt pending 00h
NMIIFG NMI pin or SVSH event 02h Highest

OFIFG oscillator fault 04h
Reserved 06h to 1Eh Lowest

T. N. Krnich 263

The table shows that for the SYSUNIV register there are two interrupt events and each
has their own value. In other words, the events are the flags and the values are their
code numbers. When there is no flag pending, there is no interruption waiting to be
handled, so the register will present the number zero (00h). The address 015Ah is to
the SYSUNIV register in main memory. We do not need that information because we'll
be using the register's variable name to access the register. The code number for the
NMIIFG is 02h, and the code for the OFIFG is 04h. Also notice the Priority column. The
NMIIFG has a higher priority. That means that when OFIFG is being handled, it can be
interrupted by a request from an NMIIFG.

So now we have what we need for writing the switch() statement. We have the
name for the IVR, which is SYSUNIV, and we have the two codes numbers which the
IVR will present for those flags.

The switch() Statement

The switch() for an IVR was introduced on page 209. It is constructed of a
switch() identifier, a decision, and cases. The result of the decision will transfer the
flow of execution to the proper case to handle the event. Since the program is going
to read an IVR to get the flag code, the register will automatically clear the flag when
read. As the decision making expression, the __even_in_range() intrinsic function
is used (as explained on page 210). Then the statement ends with the
__never_executed() function (explained on page 244).

The switch() starts on line 15. To make the

On line 16

 On line 17, the
d. Then on line 18,

).

On line 19 is the second case. It handles the

. Then on line 22, the
break keyword transfers the flow to line 23 where it exits out of the switch().

Notice that there are no flag clearing instructions. That's because when the IVR rec-
ognized it was being read, it automatically cleared the pending flag to zero. Also
notice the __never_executed() function as the last instruction in the switch(). It
just simply tells the MSP430 compiler to avoid some typical work that will not be
necessary for this switch().

264 Non-Maskable Interruption (NMI)

Returning the Flow of Execution Back to where it was Interrupted

On line 24 is the closing bracket for the ISR function. When the flow of execution
passes through this point, the microcontroller is automatically put back into the low
powered mode from where it was interrupted. That return code is automatically
added by the MSP430 compiler (see RETI on page 232).

Chapter 28

Maskable Interruption

Interruptions are organized by priority. Resets have the highest, which are followed
by the non-maskable interruptions (NMIs), and then the maskable interruptions
which have the lowest priority. Their priorities are typically shown by an interrupt
vector address table, as published by the microcontroller’s data sheet. An example of
such a table is shown by diagram 72 on page 236. And as that table shows, within the
set of maskable interruptions, their interrupt flags are further organized by priority.
But what is often left out of that chart is the prioritization of the channels in a port.
For example, channel 0 has the highest priority, while each following channel has a
progressively lower priority until channel 7 is reached, having the lowest priority.

A maskable interruption is a request which the interrupt system can be configured to
refuse. A single bitfield in the CPU status register will tell the system to refuse or
accept all requests from maskable interruptions. That field is called General Interrupt
Enable (GIE). A PUC will always initialize that field to zero so all maskable requests
will not be accepted after a reset. One of the last instructions in main() must be used
to set that bit so they can all be accepted.

Although reset interruptions and NMIs have higher priorities than maskable interrup-
tions, the maskables are of primary concern for us. Their flags are bound to interrupt
service routines (ISRs) which carry out the microcontroller's primary objective.

That objective is to

Most input signals come from peripheral modules, while some come from system
modules. And peripheral modules, which are driven by ISRs, are the source for out-
put signals. This event-driven process is shown by diagram 38 on page 110, diagram
42 on page 120, diagram 43 on page 128, and diagram 44 on page 132.

A maskable request can be made while

Here’s the rationale for implementing maskable interruptions in a microcontroller.
All maskable interruptions are managed as a single set, so if the GIE bit is cleared to
zero, their requests to interrupt the CPU will be blocked. Keep in mind that individual
maskable interrupt flags still must be enabled if you want to use them. When the

266 Maskable Interruption

interrupt system accepts a maskable interruption, it sets the GIE bit so other maskable
requests will not interrupt the current ISR until its finished. When it’s finished, the
interrupt system sets the GIE bit to resume accepting maskable interruptions.

Within the set of maskable interrupt flags, each has its own priority number. So when
one or more requests are made while the GIE bit is cleared, they will be organized by
priority number into a queue and made to wait until GIE is set again. A waiting
request is also referred to as a pending request.

We do have the option to interrupt an ISR while in progress. It can be done by placing
the interrupt enable instruction inside of the ISR. It’s the same instruction as used in
the main() function. This means that any interrupt occurring during an interrupt ser-
vice routine can interrupt the routine, regardless of the interrupt priorities. That tech-
nique is referred to as interrupt nesting.

Flow for the Maskable Interruption

Use maskable interruptions for executing ISRs which carry out the microcontroller's
primary objective. This flow is very much like the flow for the NMI, but NMIs are
used for handling operating faults, errors, and violations.

List 3: The flow of execution for a maskable interruption.

1. In this scenario, the flow of execution first enters main() because of a power-up event.
2. While the flow of execution is in the main() function, the following routines are executed:

•

3. While the microcontroller is in a low powered mode:
•

T. N. Krnich 267

4. When an event occurs, it

5. The block of logic sets the flag for that event.
6. .
7.

8. The interrupt system then executes four basic routines.
•

9. The microcontroller is now in the active operating mode with the program counter register
containing the vector (address) which points to the first instruction in the ISR.

10. The CPU executes the ISR. While inside of it, these routines are executed:
•

11. When the flow of execution reaches the last instruction in the ISR, the

12. The last instruction in the ISR is called the return from interrupt (RETI). It simultaneously
executes two stack operations (page 232).
•

268 Maskable Interruption

Continuation of list item 12. When using the C programming language, the MSP430
compiler automatically adds the RETI instruction to the end of the ISR.

Diagram 82: Table of operating modes as published by a microcontroller’s data sheet. In this case, it is for
the MSP430FR2433. The digital I/O module is shown as being On, Optional, or State Held while in those
modes. On means that it is energized and available for use. Optional means that it can be energized or de-
energized. State Held means when the microcontroller enters that mode, the port channel will not lose
the state which it was in before that mode. For example, when the mode changes from active to LPM3,
and the state of a port channel was high, then it will remain high in LMP3.

About this Chapter’s Examples

This chapter presents two programming examples. Both utilize maskable interrupt
flags which are bound to multi-flag interrupt vectors. Therefore, the ISRs will have to
distinguish which flag had caused the interruption, and then transfer the flow of exe-
cution to the proper subroutine. One example is of an ISR that uses if() selection
statements to make the decision, the other uses a switch() selection statement. And
both examples use the event-driven pattern introduced on page 120, and elaborated
on by Chapter 20, “Placing the Event-Driven Pattern into a Larger Context,” and
Chapter 22, “Event-Driven Programming Routines and Practices.”

MODE

AM LPM0 LPM3 LPM4 LPM3.5 LPM4.5
ACTIVE
MODE

(FRAM ON)
CPU OFF STANDBY OFF ONLY RTC SHUTDOWN

Maximum system clock 16 MHz 16 MHz 40 kHz 0 40 kHz 0

Power consumption at 25°C, 3 V 126 μA/MHz 40 μA/MHz
1.2 μA with

RTC counter
only in LFXT

0.49 μA
without SVS

0.73 μA with
RTC counter
only in LFXT

16 nA without
SVS

Wake-up time N/A Instant 10 μs 10 μs 350 μs 350 μs

Wake-up events N/A All All I/O RTC
I/O I/O

Power
Regulator Full

Regulation
Full

Regulation
Partial Power

Down
Partial Power

Down
Partial Power

Down Power Down

SVS On On Optional Optional Optional Optional
Brownout On On On On On On

Clock

MCLK Active Off Off Off Off Off
SMCLK Optional Optional Off Off Off Off
FLL Optional Optional Off Off Off Off
DCO Optional Optional Off Off Off Off
MODCLK Optional Optional Off Off Off Off
REFO Optional Optional Optional Off Off Off
ACLK Optional Optional Optional Off Off Off
XT1CLK Optional Optional Optional Off Optional Off
VLOCLK Optional Optional Optional Off Optional Off

Core

CPU On Off Off Off Off Off
FRAM On On Off Off Off Off
RAM On On On On Off Off
Backup memory On On On On On Off

Peripherals

Timer0_A3 Optional Optional Optional Off Off Off
Timer1_A3 Optional Optional Optional Off Off Off
Timer2_A2 Optional Optional Optional Off Off Off
Timer3_A2 Optional Optional Optional Off Off Off
WDT Optional Optional Optional Off Off Off
eUSCI_A0 Optional Optional Off Off Off Off
eUSCI_A1 Optional Optional Off Off Off Off
eUSCI_B0 Optional Optional Off Off Off Off
CRC Optional Optional Off Off Off Off
ADC Optional Optional Optional Off Off Off
RTC Optional Optional Optional Off Optional Off

I/O General-purpose
digital input/output On Optional State Held State Held State Held State Held

T. N. Krnich 269

The rationale for using one method over another is based upon how the flag registers
are read. The if() statement is used for reading conventional registers, while the
switch() statement is used for reading interrupt vector registers (IVRs). To learn
about IVRs, vectors, and multi-flagged vectors, see pages 227, 228, and 235 respec-
tively.

This is how the programs will work.

Shown by diagram 83 is a circuit schematic of the microcontroller, the mechanical
switches, and the LEDs. The program will be configuring channels P2.3 and P2.7 as
signal inputs and channels P1.0 and P1.1 as outputs. This circuit is built into the
MSP-EXP430FR2433 development kit, but the example programs will work on any
MSP430 with those peripheral devices connected to those channels.

Diagram 83: Schematic for this chapter’s programming examples. In
this case, it is taken from the MSP-EXP430FR2433 development kit.

The nature of mechanical switches is to bounce when
they are opened and closed. That behavior will produce
a sequence of input signals that will cause the ISR to run
multiple times for every switch actuation. Therefore, this is not a commercial grade
circuit. A switch interface circuit, such as a resistor-capacitor (RC) filtering circuit,
will produce a clean single input signal. But that is a topic for another volume.

The schematic published by that kit's user guide shows LED1 as red and conditioned
with a 470 Ω resistor and LED2 as green with a 392 Ω resistor. The bill of materials
(BOM), a file supplied with the kit and can be found at the kit’s home page, specifies
them as Lite-On part numbers LTST-C190CKT and LTST-C190GKT respectively.
Their data sheets further specifies the red as drawing 40 mA and the green 30 mA.
The MSP430FR2433 data sheet specifies that the typical output current at a channel
when VCC is 3 volts is about 23 mA, so the resistors are there as current limiters to
protect the microcontroller.

ISR using the if() Selection Statement to Determine which Maskable Flag is
Set

Use the if() selection statement in the ISR when the flags for a maskable interrupt
vector are only available as bitfields in a conventional register. This technique was
first introduced on page 207. Such an ISR is shown by code example 78, on
page 270.

LED1

LED2

SW1

SW2

GND

P1.0

P1.1
MSP430

P2.3

P2.7

GND

270 Maskable Interruption

The main() function

The purpose of main() will be to configure channels 3 and 7 of port 2 so they can
sense input signals which will set a maskable flag, then configure channels 0 and 1 of
port 1 to produce output signals, then unlock the port channels, then enable maskable
interruptions, and then to put the microcontroller into low powered operating mode 0.

The routine in main() is made with just enough instructions to prepare the microcon-
troller to execute the ISR, no more and no less. But it still follows the event-driven
pattern of program development that was introduced on page 120. The routine begins
on line 3 with an instruction that puts the watchdog on hold.

Code Example 78: ISR which uses the if() selection statement to determine which maskable
flag was set. Use the if() selection statement in the ISR when the flags are only available as
bitfields in a conventional register. The ISR begins on line 17.

1 // Base header file (see page 146)
2 // Begin main() (see page 99)
3 ; // Stop the watchdog timer (page 94)
4 // Set P2.3 & P2.7 signal direction outwards
5 //
6 // Set P2.3 & P2.7 to enable channel interrupts
7 ; // Set P2.3 & P2.7 transition fr. high to low
8 ; // Clear P2.3 & P2.7 flags
9 // Set P1.0 & P1.1 direction outwards to LEDs
10); // Clear P1.0 & P1.1 output to darken LEDs
11 // Unlock all port channels (page 201)
12 ; // Enable maskable interruptions (page 212)
13 // Put in low powered operating mode 0 (page 222)
14 // Never reached
15 } // End main()
16 //Bind this vector to the following ISR
17 // ISR signature
18 // If P2.3 IFG is set, then
19 // Toggle P1.0 (LED), and then
20 // Clear P2IFG.3 IFG
21

 // If P2.7 IFG is set, then
23 ; // Toggle P1.1 (LED), and then
24 ; // Clear P2IFG.4 IFG
25 } // End if
26 } // End ISR

Configuring P2.3 and P2.7 to Sense Input Signals

These instructions will configure the input paths and signals from the switches. By
reading the Digital I/O chapter of the microcontroller's user guide, we know that five
registers will have to be configured. And since the fields in port registers do not have
bitfield names, we'll be using the standard bits for setting and clearing bits in those
registers (page 47).

Diagrams 77 and 78, on page 256, show the Port x Direction (PxDIR) and Port x Out-
put (PxOUT) registers. So on line 4, we set bitfields 3 and 7 in P2DIR to direct their
signals outwards, and then on line 5 we set the same fields in P2OUT to produce a dig-
ital high output signal on those same channels. That will create the loop-back signals
we need at those channels, as shown by diagram 48 on page 157.

T. N. Krnich 271

Now we enable those channels to set interrupt flags when they sense a signal transi-
tion from high to low. As published by the same Digital I/O chapter, we have to make
changes in the Port x Interrupt Edge Select (PxIES) register, the Port x Interrupt
Enable (PxIE) register, and for house cleaning purposes, the Port x Interrupt Flag
(PxIFG) register. So on line 6

. And to assure those flags
are not set during a power-up, on line 8 we clear those flags in P2IFG.

Diagram 84: PxIES register as published is the micrcontroller’s user guide.

Diagram 85: PxIE register as published is the micrcontroller’s user guide.

Diagram 86: PxIFG register as published is the micrcontroller’s user guide.

Configuring P1.0 and P1.1 to Produce Output Signals

These instructions will configure the output paths and signals for toggling the LEDs.
On line 9, bits in fields 0 and 1 of P1DIR are set to configure the signal direction out-
ward. On line 10, the same fields, but in P1OUT are set to produce a digitally high out-
put signal.

Final Instructions for main()

While reading the Digital I/O chapter, we also learned that this microcontroller must
have its port channels unlocked before usage. This is common with microcontrollers
built with FRAM. Therefore, on line 11 of main(), an instruction unlocks the port
channels (page 201).

PxIES Register
7 6 5 4 3 2 1 0

PxIES
rw rw rw rw rw rw rw rw

PxIES Register Description
Bit Field Type Reset Description
7-0 PxIES RW Undefined Port x interrupt edge select

0b = PxIFG flag is set with a low-to-high transition
1b = PxIFG flag is set with a high-to-low transition

PxIE Register
7 6 5 4 3 2 1 0

PxIE
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxIE Register Description
Bit Field Type Reset Description
7-0 PxIE RW 0h Port x interrupt enable

0b = Corresponding port interrupt disabled
1b = Corresponding port interrupt enabled

PxIFG Register
7 6 5 4 3 2 1 0

PxIFG
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxIFG Register Description
Bit Field Type Reset Description
7-0 PxIFG RW Undefined Port x interrupt flag

0b = No interrupt is pending.
1b = Interrupt is pending.

272 Maskable Interruption

On line 12, maskable interruptions are enabled (page 212). On line 13, the instruction
puts the microcontroller into low powered operating mode zero (page 222), and on
line 14 is the return statement. In our programming model, the return instruction
should never be reached by the flow of execution. But it is there as a good program
development practice (page 100).

The ISR's Behavior

Here's what we want the ISR to do.

Writing the ISR

The work needed to write this ISR can be reduced to three steps: 1) getting the inter-
rupt vector's name, 2) binding the vector to the ISR, and then 3) writing the if()
selection statements.

Port Channel Flag Names

Before proceeding with getting the vector's name for a port, we need to know the
names for each port channel flag. This is a simple matter because,

Diagram 86 on page 271, shows the PxIFG register. It generically represents any port
IFG register. So for example, the flag names for channels 3 and 7 are BIT3 and BIT7
respectively. This technique was described by Chapter 9 on page 77.

Getting the Interrupt Vector Name

We need to get the vector's name for all the port 2 interrupt flags which will be moni-
tored. So we open

 An image of that table is shown by
diagram 72 on page 236, and in this case, it's for the MSP430FR2433.

In the first column, the table shows P2. That identifies the port 2 interrupt source. The
second column shows the interrupt flag names, but the flag names are not as we
would expect. They are shown as P2IFG.0 to P2IFG.7. Those are not the names we
use for reading a conventional interrupt flag register, as shown by diagram 86. They
are used for reading an interrupt vector register (IVR), and the table shows the regis-
ter name as P2IV. In the next ISR example, we'll be using the switch() statement to
read the IVR, so ignore all that IVR stuff for now, since we'll be using the standard
bits to read a conventional flag register.

T. N. Krnich 273

In the Word Address column is the address to the vector in main memory. It shows
address number FFDAh containing the vector to all the port 2 flags. The suffix h
denotes the number as being in hexadecimal notation, but just focus on the number
itself: FFDA.

Next, we open the microcontroller's base header file (described on page 45), and in
that file is a section that defines all the microcontroller's vectors. An image of that
section is shown by diagram 71 on page 229. By searching for the address number
FFDA, we can find the symbolic name for the vector. In this case, it is defined as
PORT2_VECTOR, and its address number is prefixed with 0x, which is another way
to denote a hexadecimal number.

We can now start writing our ISR, as shown by code example 78 on page 270.

Binding the Vector to the ISR

.

The ISR's Signature

.

How Many if() selection Statements to Use

The First if() Selection Statement

On line 18 is the beginning of the first if() selection statement. It reads the state of
channel 3's flag (BIT3) and then compares it to the standard bit BIT3 to determine if
the flag is set (see page 77 about how that expression works). If the flag is set, the
flow of execution enters the body of the statement.

The first instruction in the body, on line 19, toggles the bit in Field 0 of the P1OUT reg-
ister. Those register fields produce output signals. If the signal is high, the instruction
toggles it low, and vice versa. On line 20 the flag for channel 3 in the P2IFG register is
cleared. And on line 21 is the closing bracket for this if() statement.

The Second if() Selection Statement

This is very much like the first if() statement. On line 22 is the beginning of the sec-
ond if() selection statement. It reads the state of channel 7's flag (BIT7) and then

274 Maskable Interruption

compares it to the standard bit BIT7 to determine if the flag is set. If the flag is set, the
flow of execution enters the body of the statement.

The first instruction in the body, on line 23, toggles the bit in Field 1 of the P1OUT reg-
ister. On line 24 the flag for channel 7 in the P2IFG register is cleared. And on line 25
is the closing bracket for this if() statement.

Returning the Flow of Execution Back to where it was Interrupted

On line 26 is the closing bracket for the ISR function. When the flow of execution
passes through this point, the microcontroller is automatically put back into the low
powered mode from where it was interrupted. That return code is automatically
added by the MSP430 compiler (see RETI on page 231).

ISR using the switch() Selection Statement to Determine which Maskable Flag
is Set

Use the switch() selection statement in the ISR when the flags for a maskable inter-
rupt vector are available as code numbers in an interrupt vector register (IVR). This
technique was first introduced on page 208. Such an ISR is shown below.

Code Example 79: ISR which uses the switch() selection statement to determine which
maskable flag was set. Use the switch() selection statement in the ISR when the flags are
available as code numbers in an interrupt vector register (IVR). The ISR begins on line 17.

1 // Base header file (see page 146)
2 // Begin main() (see page 99)
3 ; // Stop the watchdog timer (page 94)
4 // Set signal direction outwards
5 // Set signal output to high
6 ; // Set to enable channel interrupts
7); // Set transition fr. high to low
8); // Clear P2.3 & P2.7 flags
9); // Set P1.0 & P1.1 direction outwards to LEDs
10); // Clear P1.0 & P1.1 output to darken LEDs
11 ; // Unlock all port channels (page 201)
12); // Enable maskable interruptions (page 212)
13 // Put in low powered operating mode 0 (page 222)
14 // Never reached
15 } // End main()
16 // Bind this vector to the ISR
17 // ISR signature
18 // Begin switch() (see page 208)
19 // Case for a set P2.3 IFG
20 ; // Toggle P1.0 (LED)
21 // Exit switch()
22 : // Case for a set P2.7 IFG
23 ; // Toggle P1.1 (LED)
24 // Exit switch()
25 // See description on page 244
26 } // End of switch() statement
27 } // End of ISR

The main() Function

The main() function for this example is written exactly as it is written for code exam-
ple 78. There is no difference. So its purpose is the same. It configures channels 3 and

T. N. Krnich 275

7 of port 2 so they can sense input signals which will set a maskable flag, then config-
ure channels 0 and 1 of port 1 to produce output signals, then unlock the port chan-
nels, then enable maskable interruptions, and then to put the microcontroller into low
powered operating mode 0. It also follows the event-driven pattern of program devel-
opment.

The ISR's Behavior

Writing the ISR

The work needed to write this ISR can be reduced to four steps: 1) getting the port
channel flag names, 2) getting the interrupt vector's name, 3) binding the vector to the
ISR, and then 4) writing the switch() selection statement.

Getting the Port Channel Flag Names

With a conventional port flag register, as shown by diagram 86 on page 271, we have
to use the standard bits (page 47) as the channel flag names. With an interrupt vector
register (IVR), as shown by diagram 87, we use the flag names as published by the
microcontroller msp430.h header file. The IVR was introduced on page 209, and see
page 45 for instructions about opening the header file.

Diagram 87 shows the Port 2 Interrupt Vector (P2IV) register. It is dedicated to all the
port 2 flags. It presents a code number that will be either zero or even number in
binary notation. If zero, there is no flag set or pending. If it presents an even code
number within the range from 2 (02h) to 10 (10h), then there is a set (pending) flag
waiting to be handled. The code number distinguishes the specific flag. The register
description shows the flag code numbers in hexadecimal notation from 02h to 10h,
but it does not give us the actual names that have to be used in our program. To get
those names, we search the header file.

The header file has sections which define the flag names for each IVR. The names
are defined as symbolic constants. In this case, it's the flags for P2IV.

Code Example 80 shows the symbolic constant definitions for P2IV section. The first
column is the #define preprocessor directive. It tells the C compiler to assign the
number shown in the third column to the symbolic constant in the second column.

276 Maskable Interruption

Diagram 87: Port 2 Interrupt Vector (IV) register as published is the micrcontroller’s user guide. In the cur-
rent example it is for the MSP430FR2433.

The symbolic constant is a number which represents the flag name, and its value is
the flag code number which the interrupt vector register will present to us.

Code Example 80: Channel flag name definitions for the Port 2 Interrupt Vector (P2IV) register
as published by the micrcontroller’s msp430.h header file.

 /* No Interrupt pending */
 /* P2IV P2IFG.0 */
) /* P2IV P2IFG.1 */
 /* P2IV P2IFG.2 */
) /* P2IV P2IFG.3 */
 /* P2IV P2IFG.4 */
) /* P2IV P2IFG.5 */

 (0x0010) /* P2IV P2IFG.7 */

We'll be using the symbolic constants in our switch() statement for determining
which flag is pending. We only need the symbols for channels 3 and 7 of port 2. They
are P2IV_P2IFG3 and P2IV_P2IFG7 respectively.

Getting the Interrupt Vector Name

We now have to get the interrupt vector name, since that will be the name we use for
binding the flags to our ISR. So we open our microcontroller's data sheet and go to
the Interrupt Vector Addresses section. It publishes a table of all the microcontroller's
interrupt flags and the address in main memory to each flag's vector. An image of that
table is shown by diagram 72 on page 236, and it's for the MSP430FR2433.

In the first column, the table shows P2. That identifies the interrupt source as being
Port 2. The second column shows the interrupt flag names as being P2IFG.0 to
P2IFG.7.

Unfortunately, those are not the actual flag names, but metaphors for the names. We
know the actual names because in the last section we had found them in the micro-

P2IV Register
15 14 13 12 11 10 9 8

P2IV
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0
P2IV

r0 r0 r0 r-0 r-0 r-0 r-0 r0

P2IV Register Description
Bit Field Type Reset Description
15-0 P2IV R 0h Port 2 interrupt vector value

00h = No interrupt pending
02h = Interrupt Source: Port 2.0 interrupt; Interrupt Flag: P2IFG.0; Interrupt
Priority: Highest
04h = Interrupt Source: Port 2.1 interrupt; Interrupt Flag: P2IFG.1
06h = Interrupt Source: Port 2.2 interrupt; Interrupt Flag: P2IFG.2
08h = Interrupt Source: Port 2.3 interrupt; Interrupt Flag: P2IFG.3
0Ah = Interrupt Source: Port 2.4 interrupt; Interrupt Flag: P2IFG.4
0Ch = Interrupt Source: Port 2.5 interrupt; Interrupt Flag: P2IFG.5
0Eh = Interrupt Source: Port 2.6 interrupt; Interrupt Flag: P2IFG.6
10h = Interrupt Source: Port 2.7 interrupt; Interrupt Flag: P2IFG.7; Interrupt
Priority: Lowest

T. N. Krnich 277

controller's header file. And right next to those metaphors, and in parenthesis, is the
name for the interrupt vector register (IVR).

In the fourth column is the information we need. It shows us the address in main
memory where the interrupt vector is located. It shows address number FFDAh as
where the vector to all the port 2 flags is stored. The suffix h denotes the number as
being in hexadecimal notation, but just focus on the number itself: FFDA.

Next, we

We can now start writing our ISR, as shown by code example 79 on page 274.

Binding the Vector to the ISR

.

The ISR's Signature

On line 17 is the function signature for our ISR. It is specified with the __interrupt
keyword, and it is further specified as being void of any return statement and void
of any parameters. ISRs must always have those voids. The name for this ISR func-
tion is PORT2_ISR. It can be any name we choose, but in compliance with the C lan-
guage. The line ends with the open bracket that delimits the beginning of the
function's body.

How Many case selection Statements to Use

The switch() selection statement is an intrinsic function to the C programming lan-
guage. So the instruction on line 18 can be viewed as that function's signature.

Within the switch() are case statements. The purpose of the case statement is to
determine if a specific number is equal to the number which was read or collected by
the switch()'s signature. If the case number is equal to the number read by the sig-
nature, then the flow of execution enters the body of the case.

A case does not have to be written for flags which will not be used. Therefore, use
one case per flag that we plan on using. In this example, two flags will be monitored,
so only two cases are needed.

The First Case

This case determines whether or not the P2.3 flag is set, and if it is, the flow of exe-
cution is then transferred into the body of the case. So on line 19 is the beginning of

278 Maskable Interruption

the case. It takes the number read by the switch() signature and compares it to the
case number. For this case, it is P2IV_P2IFG3, which is the flag code number for
channel 3 of port 2.

Notice that there is no instruction for clearing the pending flag in the IVR.

The Second Case

This case determines whether or not the P2.7 flag is set, and if it is, the flow of exe-
cution is then transferred into the body of the case, just like the first case. So on line
22 is the beginning of the case. It takes the number read by the switch() signature
and compares it to the case number. For this case, it is P2IV_P2IFG7, which is the
flag code number for channel 7 of port 2.

The first instruction in the body, on line 23, toggles the bit in Field 1 of the P1OUT reg-
ister. If the signal is high, the instruction toggles it low, and vice versa. Then on line
24 is the break statement. It transfers the flow of execution to line 26, out of the
switch(). And once again, no flag clearing instruction is needed.

Returning the Flow of Execution Back to where it was Interrupted

On line 27 is the closing bracket for the ISR function. When the flow of execution
passes through this point, the microcontroller is automatically put back into the low
powered mode from where it was interrupted. That returning program code is auto-
matically added by the MSP430 compiler (see RETI on page 232).

Chapter 29

Interruption from Fractional Low Powered Mode (LPMx.5)

Use the interruption from fractional low powered mode (LPMx.5) when you need to
put the microcontroller into an operating mode which consumes the least amount of
energy. This type of operating mode was introduced on page 131, then by Chapter 22
on page 175, and then elaborated upon on page 223. It is a type of maskable interrup-
tion which power is removed from most modules and systems.

The most important characteristics about this operating mode is that 1) a limited set
of systems and modules will remain active, 2) that power is removed from memory,
therefore, all volatile data, such as data in storage variables and register settings will
be lost, and 3) that an interruption will force the microcontroller to go through a com-
plete system reset and then re-enter the main() function before the interrupt service
routine (ISR) is executed. So we have to take all that into account when developing a
program.

For a complete explanation about LPMx.5 and any changes made to it, we have to
refer

In the data sheet, we would want to read the sections about the “Functional Block
Diagram” and the “Operating Modes.” The diagram will show us which systems and
modules are located in the LPMx.5 domain, meaning, which of them will remain
active and able to interrupt the microcontroller. Diagram 6, on page 18, presents a
typical functional block diagram that shows an LPMx.5 domain. The domain is a
boundary that shows which systems and modules are active during LPMx.5. The
operating modes section of the data sheet will publish a table that explicitly lists
every operating mode and which systems remain active during an operating mode.
Diagram 88, on the next page, shows such a table as published by the data sheet for
the MSP430FR2344.

At this time, only three types of events are able to interrupt LPMx.5, but future
designs may include more. Those events

.

280 Interruption from Fractional Low Powered Mode (LPMx.5)

Data held by a storage variable will be lost during LPMx.5 or when power is discon-
nected from the microcontroller because such variables are placed in volatile sections
of main memory. So to protect a storage variable, we use a volatile data handler
(page 217). Handlers can be written to use the PERSISTENT() #pragma or a backup
memory register (BAKMEM). The #pragma must be written outside of and before the
main() function, while the instruction which uses the backup memory register will
typically be put inside of main() or an interrupt service routine (ISR). Be aware that
BAKMEM registers are available only when the Real-Time Clock (RTC) is enabled, but
that may change in the future, and they are not available in all microcontrollers.

Diagram 88: Table of operating modes as published by the data sheet for the MSP430FR2433. Notice the
items for the fractional low powered modes LPM3.5 and LPM4.5, and that the Backup Memory registers
(BAKMEM) are not available during LPM4.5. Furthermore, the table does not mention that BAKMEM regis-
ters are available only when the Real-Time Clock (RTC) is enabled, at least for now.

(1) The status shown for LPM4 applies to internal clocks only.

Operating Modes

MODE

AM LPM0 LPM3 LPM4 LPM3.5 LPM4.5
ACTIVE
MODE

(FRAM ON)
CPU OFF STANDBY OFF ONLY RTC SHUTDOWN

Maximum system clock 16 MHz 16 MHz 40 kHz 0 40 kHz 0

Power consumption at 25°C, 3 V 126 μA/MHz 40 μA/MHz
1.2 μA with

RTC counter
only in LFXT

0.49 μA
without SVS

0.73 μA with
RTC counter
only in LFXT

16 nA without
SVS

Wake-up time N/A Instant 10 μs 10 μs 350 μs 350 μs

Wake-up events N/A All All I/O RTC
I/O I/O

Power
Regulator Full

Regulation
Full

Regulation
Partial Power

Down
Partial Power

Down
Partial Power

Down Power Down

SVS On On Optional Optional Optional Optional
Brownout On On On On On On

Clock(1)

MCLK Active Off Off Off Off Off
SMCLK Optional Optional Off Off Off Off
FLL Optional Optional Off Off Off Off
DCO Optional Optional Off Off Off Off
MODCLK Optional Optional Off Off Off Off
REFO Optional Optional Optional Off Off Off
ACLK Optional Optional Optional Off Off Off
XT1CLK Optional Optional Optional Off Optional Off
VLOCLK Optional Optional Optional Off Optional Off

(2) Backup memory contains 32 bytes of register space in peripheral memory. See Table 6-24 and Table 6-43 for its memory allocation.

Core

CPU On Off Off Off Off Off
FRAM On On Off Off Off Off
RAM On On On On Off Off
Backup memory(2) On On On On On Off

Peripherals

Timer0_A3 Optional Optional Optional Off Off Off
Timer1_A3 Optional Optional Optional Off Off Off
Timer2_A2 Optional Optional Optional Off Off Off
Timer3_A2 Optional Optional Optional Off Off Off
WDT Optional Optional Optional Off Off Off
eUSCI_A0 Optional Optional Off Off Off Off
eUSCI_A1 Optional Optional Off Off Off Off
eUSCI_B0 Optional Optional Off Off Off Off
CRC Optional Optional Off Off Off Off
ADC Optional Optional Optional Off Off Off
RTC Optional Optional Optional Off Optional Off

I/O General-purpose
digital input/output On Optional State Held State Held State Held State Held

NOTE
XT1CLK and VLOCLK can be active during LPM4 if requested by low-frequency peripherals,
such as RTC or WDT.

T. N. Krnich 281

Diagram 89, shown below, illustrates an abstract view of the flow of program execu-
tion in a program designed to handle an interrupt from LPMx.5. It shows the most
fundamental routines and the relationships between them. In other words, a frame-
work which we can build upon. It starts at the power-up event, then goes through a
set of routines before entering the main() function. One of the last routines before
entering main() involves the PERSISTENT() #pragma. Once inside main(), the struc-
ture of the routines are very much in line with the event-driven pattern shown by dia-
gram 42 on page 120 and diagram 43 on page 128. The fundamental difference is that
an LPMx.5 interrupt handler is used here. It will decide on whether or not the flow of
execution had emerged from a power-up event or an interruption from LPMx.5.

Diagram 89: Basic flow of routines needed
for creating and handling an interruption from
a fractional low powered operating mode
(LPMx.5). Since volatile data will be lost when
put into this mode, it must be saved as non-
volatile. That work can be done by using the
PERSISTENT() #pragma, or the backup
memory (BAKMEM) registers, or by writing to a
peripheral data storage device. The BAKMEM
registers typically depend on an active RTC.

The purpose of the LPMx.5 Interrupt
Handler is to transfer the flow of exe-
cution to an ISR which handles the
LPMx.5 interruption or to avoid it. A
program selection structure, such as
an if() statement (page 106), is used
for making the decision. If the flow
had emerged from an LPMx.5 inter-
ruption, then maskable interruptions
are immediately enabled so the ISR
which specifically handles interrup-
tions from LPMx.5 can be executed.
On the other hand, if the flow had
emerged from a power-up event, then
all enabled maskable interrupt flags,
located outside of the LPMx.5
domain, which were inadvertently set
are then first cleared before maskable
interruptions are enabled. It is important to keep in mind that

An MSP430 typically provides at least two bitfields that can be read to determine
which event had caused the flow of execution to enter main(). We must use the
microcontroller's user guide to verify the exact names for those bitfields and regis-
ters, but here are the typical fields which are available to us for now. The first bitfield

Interrupt From LPMx.5

main()

LPMx.5 ISR

Limited availability
and it typically
requires an Active
RTC Module.

An interruption from LPMx.5 is typically caused by a flag set by a port channel, or the
Real-Time Clock (RTC), or the RST/NMI pin in reset mode. See the Operating Modes
section of the micrcocontroller’s user guide for more information and updates.

282 Interruption from Fractional Low Powered Mode (LPMx.5)

is typically called the Power Management Module LPM5 Interrupt Flag
(PMMLP5IFG), and it is typically located in the Power Management Module Interrupt
Flag register (PMMIFG). When the microcontroller is interrupted from LPMx.5, the
PMM will set this bit as an indicator for that type of event.

Alternatively, the second bitfield is located in an interrupt vector register (IVR), so
it's not a single bitfield; all the fields in the register are read to obtain a code. That
register is typically called the System Reset Interrupt Vector register (SYSRSTIV), and
the codes which it presents are published by the microcontroller's data sheet. This
should be our primary register for getting information about which event had caused
a reset. See page 209 and page 227 for more information about IVRs.

After the ISR is executed,

When an event interrupts the microcontroller from LPMx.5, the flow of execution is
immediately transferred into the BOR, the first phase in the reset system, and then the
flow has to once again go through the entire reset system, then re-enter main, then
reconfigure the systems and modules, and then enter the LPMx.5 interrupt handler.
And that is where the flow is transferred towards the ISR so it can be executed.

The details of this flow are described by the remaining sections of this chapter.

Flow for the LPMx.5 Interruption

Shown by List 4 is a step-by-step explanation about the flow for the LPMx.5 inter-
ruption that was illustrated by diagram 89 on page 281. As a convenient starting
point, step 1 begins at where the flow of execution emerges from the boot program.
Boot was introduced on page 139. What caused the flow to enter boot does not mat-
ter, it could have been caused by a conventional system reset event, a power-up
event, or an interruption from LPMx.5.

Keep in mind that List 4 does not step through the entire flow of execution. It only
describes the steps which go through the main() function. If an interruption from
LPMx.5 had caused the flow to enter main(), then the interrupt handler will transfer
the flow to the interrupt service routine (ISR), which is located outside of main().
The ISR is described by List 5 on page 284, in the next section. The flow then returns
back to main() at the place where it had been transferred out.

List 4: Flow for the LPMx.5 interruption.

1. We begin with the flow of execution emerging from the boot program.
2.

,

T. N. Krnich 283

3. Flow now enters the main() function.

4. The watchdog timer handler is entered (page 178). Do one of the following.
•

5.

6.

7.

8.
9.

10. Flow enters the LPMx.5 Interrupt Handler.
•

11. If the LPMx.5 ISR was executed, the

12.

.
13. Prepare the microcontroller for LPMx.5.

•

284 Interruption from Fractional Low Powered Mode (LPMx.5)

14. The microcontroller is now in a fractional low powered operating mode. This means the
power is removed from most systems and modules which results in the following condi-
tions:
•

15. The microcontroller is now in a specific fractional low powered operating mode (LPMx.5).
16.

Flow for the LPMx.5 Interrupt Service Routine (ISR)

As illustrated by diagram 89 on page 281, this section is a continuation of the flow
that had been transferred out of main() and into this ISR. The transfer was carried
out by the LPMx.5 Interrupt Handler at step 10 on page 283.

The handler had determined that the microcontroller had emerged from a low pow-
ered fractional operating mode (LPMx.5), so it transferred the flow to an instruction
that enabled maskable interruptions. Immediately after they were enabled, the request
for interruption (IRQ) signal, which was caused by the flag, was recognized by the
interrupt system. Here is the sequence of routines which lead up to the ISR and then
executes it.

List 5: Flow for the LPMx.5 ISR:

1. Once the interrupt system accepts the request, it then executes five routines.
•

T. N. Krnich 285

.
2. The microcontroller is now back in the active operating mode (AM) with the program

counter register containing the vector (an address) which points to the first instruction in the
ISR.

3.

4. The RETI instruction transfers the flow of program execution back into main().

Program Example

Fractional low powered mode (LPMx.5) is typically limited to microcontrollers
which are built of Ferro-Electric RAM (FRAM). They are distinguished by the letters
FR in their part number; for example, MSP430FR2433. Those letters indicate the
series, which in this case, means the FRAM series.

Code Example 81, on page 289, shows a program that configures the microcontroller
for use before putting it into LPM3.5, a mode of sleep from where the microcontrol-
ler will wait to be interrupted to carry out an interrupt service routine (ISR). That pro-
gram should work on any FR series of MSP430 with no or very little change made to
it. It follows the event-driven pattern of programming, and that pattern is modified to
incorporate the pattern of development for using fractional low powered operating
modes. The event-driven process is shown by diagram 38 on page 110, by diagram
42 on page 120, by diagram 43 on page 128, and by diagram 44 on page 132. That

286 Interruption from Fractional Low Powered Mode (LPMx.5)

pattern has been modified to use LPMx.5 as described by earlier sections in this
chapter and illustrated by diagram 89 on page 281.

This program will execute in the LPM3.5 and LPM4.5 operating modes. It uses the
PERSISTENT() #pragma for protecting (saving) data in a storage variable while in
one of those modes. One characteristic of those modes is their extremely low amount
of power consumption, while the other characteristic is the loss of volatile data held
by storage variables.

To keep the program simple, it does not include

Circuit Schematic for the Program

The circuit is very simple. It is built of an MSP430FR series microcontroller, two
switches, two LEDs, a power supply, and wires for interconnecting them. To simplify
the schematic, it does not include interface conditioning circuits, such as RC interface
circuits for the switches and a decoupling interface circuit for conditioning the power
supply; nor does the circuit show the power supply connections.

Diagram 90: Circuit schematic for the program example in this
chapter.

As a convenience, this circuit is available as a low cost,
prebuilt development kit called the MSP-
EXP430FR2433. Therefore, that schematic takes into
account the port channel numbers, the switch numbers, and LED numbers which are
used in that kit. So Switch 1 (SW1) is connected to channel 3 of port 2 (P2.3), and
SW2 is connected to P2.7. LED1 is connected with channel zero of port 1 (P1.0), and
LED2 is connected to P1.1.

How the Program Example Works

The program goes through a sequence of routines which configure the microcontrol-
ler for use and then puts it into LPM3.5, a deep level of sleep. When a switch is
closed (this is the event), it provides a signal to the port channel. The channel

.

The ISR determines which channel had caused the interruption, and then transfers the
follow of execution to the proper subroutine to carry out a specific set of instructions.
If the interruption was caused by SW1, then the subroutine will increment a counter
variable by 1, and then flash LED1 by the number of times equal to the number

LED1

LED2

SW1

SW2

GND

P1.0

P1.1
MSP430

P2.3

P2.7

GND

T. N. Krnich 287

stored in the variable. The development kit uses a green colored LED for LED1. If
the interruption was caused by SW2, then the subroutine will clear the counter vari-
able to zero and flash LED2. The kit uses a red colored LED for LED2. When the
flow of execution finishes with the ISR, the microcontroller is automatically put back
into LPM3.5. While the microcontroller is in LPM3.5, the contents of the counter
variable are protected because the PERSISTENT() #pragma put it in non-volatile
memory. So for example, if the counter contains the number 2, and SW1 is closed to
produce a signal, then the ISR will increment the counter to the number 3 and then
flash the green LED, at P1.0, three times. If SW2 is closed, then the ISR will clear the
counter to zero and then flash the red LED once.

As a convenience, the ISR uses a . It is a built-in MSP430 intrinsic
function that

. Its purpose is to mit-
igate false input signals caused by the bouncing mechanical switch contacts. It is a
simple substitute for a proper switch interface circuit, so it should not be used in a
commercial grade program to mitigate false signals caused by a bouncing switch.

Structure of the Program Example

Functions are used for organizing the program into blocks of instructions which carry
out a specific task. That technique will simplify the main() function so it will appear
shorter and thus easier to comprehend. The functions are labeled with names which
clearly state their purpose.

So preceding the main() function is a sequence of instructions which tell the
MSP430 compiler to include the msp430.h header file, then declare the prototypes of
each function we define after main(), and then a couple of instructions that use the
PERSISTENT() #pragma to create our counter variable and store it in non-volatile
memory.

The main() function contains a sequence of functions that will configure the micro-
controller for use. The ports are unlocked, and then an LPMx.5 interrupt handler
decides whether or not the microcontroller had emerged from reset because of an
interruption or just from a conventional power-up event. The remaining instructions
in main() prepare the microcontroller for LPMx.5 and then puts it to sleep.

Four functions and one ISR follow main(). The first one contains instructions which
configure modules which are located outside of the LPMx.5 domain. The second one
configures those which are inside the domain. The third one clears all interrupt flags
which are enabled for use. And the fourth one contains instructions which prepare the
microcontroller for a fractional low powered mode. The ISR just simply contains
instructions which handle the interruption.

Be aware that the program is lean. Meaning, it does not contain all the instructions
which are shown in the event-driven pattern of programming. This is intentional in
order to focus on the basic structure of instructions for a program that will handle
interruptions from LPMx.5. Furthermore, this is just one way to handle such an inter-

288 Interruption from Fractional Low Powered Mode (LPMx.5)

ruption. You may be able to design a better pattern, or one which better suits your
needs.

Program Example

The program is shown by code example 81. At line 1, it begins by including the stan-
dard header file (page 146). Then, as required by the C language, the function proto-
types are listed before main(), while their definitions are placed after main(). So on
line 2 is the prototype for configuring peripheral modules located outside of the
LPMx.5 domain. Its definition begins on line 27. Since this program does not use any
module outside of that domain, it only contains an MSP430 intrinsic function named
__no_operation() that tells the CPU to just simply copy the contents in CPU Regis-
ter 3 and write them back into the same register. This is just a place holder to show
that this is where such configuration instructions would be located.

On line 3

Back to line 4 where

On line 5

Next, an instruction then turns off the PMM voltage regulator, which is
what really reduces the power consumption in fractional mode. And then the PMM
registers are relocked by writing an incorrect password into the upper eight bits of the
PMMCTL0 register. Those instructions were introduced earlier on page 222.

On line 6 is the that we use for telling the MSP430 compiler
to place our variable named counter into non-volatile memory, and then on the fol-

T. N. Krnich 289

lowing line that variable is declared and initialized to zero. The usage of that #pragma
was introduced on page 217.

Code Example 81: Program that uses an interruption from LPM3.5.

1 // base header file
2 // function prototype
3 // function prototype
4 // function prototype
5 // function prototype
6 // Make counter non-volatile, and then
7 // declare and initialize the variable.
8
9
10 // Put watchdog timer on hold.
11
12

 Unlock systems in LPMx.5 domain.
14 // LPMx.5 Interrupt Handler.
15 // If interrupted from LPMx.5,
16 // enable maskable interruptions.
17 } // End if() block.
18 // If not interrupted from LPMx.5,
19 // clear all enabled flags, and then
20 // enable maskable interruptions.
21 } // End else block.
22 // Prepare for fractional mode.
23 // Put into Low Powered Mode 3.
24 // Never reached.
25 } // End main().
26
27
28 // Since there are no items, do nothing.
29 } // End of function definition.
30
31
32
33 // Clear to set signal direction as inwards.
34 // Set signal transition from high to low.
35 // Set to enable resistors to pull high.
36 // Set to put output channel to logical high.
37
38 // Clear P1.0 & P1.1 output to darken LEDs.
39 // Set P1.0 & P1.1 direction outwards to LEDs.
40

 // Set to enable interrupts by these flags.
42 } // End of function definition.
43
44
45 // Clear P2.3 and P2.7 flags.
46 } // End of function definition.
47
48
49
50 // Unlock PMM registers w. regard to SVSHE.
51 // Set to turn off PMM voltage regulator.
52 // Lock the PMM registers.
53 } // End of function definition.
54

290 Interruption from Fractional Low Powered Mode (LPMx.5)

55 /******************* This is our ISR ***************************************/
56
57 // Bind this vector to the ISR
58 // ISR signature
59 _ ; // wait for switch to stop bouncing-150 ms
60 // Counter for while() loops
61
62 // Begin switch() statement
63 // If P2.3 IFG is set, then
64 // unlock Program FRAM,
65 // increment counter variable,
66 // then lock Data and Program FRAM
67 // while i < counter,
68 // Set to light P1.1 green LED,
69 // delay execution for .5 second,
70

 ; // delay for .5 second, and then
72 // increment while() loop counter.
73 } // End while() loop
74 // End of case. Exit switch().
75 // If P2.7 IFG is set, then
76 // unlock FRAM,
77 // clear counter,
78 ; // lock FRAM, and then
79 // Set to illuminate red LED
80 // delay execution for 2 seconds,
81

 ; // End case. Exit switch().
83
84 } // End of switch() statement
85 } // End ISR

On line 9 begins the definition for our main() function. Then on line 10 we turn off
the watchdog timer, but if this were going to be a commercial grade program, a
proper watchdog would be configured, but turned off before the microcontroller is
prepared for LPMx.5 on line 22. The watchdog timer was introduced on page 89, and
then starting at page 178, it is elaborated upon. On lines 11 and 12 are the calls to the
functions which configure the peripheral modules. And on line 13 we unlock the port
channels and other functions which are in the LPMx.5 domain, otherwise, they will
not be available for use.

Beginning on line 14 and ending on line 21 is our LPMx.5 interrupt handler. It
decides on whether or not the flow of execution had emerged from a conventional
power-up event or a reset caused by an interruption from LPMx.5. So on line 14, the
System Reset Interrupt Vector register (SYSRSTIV) is read, and if what is read equals
to the SYSRSTIV_LPM5WU constant, then the flow had emerged from an interruption
from LPMx.5. The constant is defined by

, it is
transferred to line 16 where maskable interruptions are enabled, and then immedi-
ately it is transferred to the first instruction in our ISR, that begins on line 58. When
finished with the ISR, the flow is automatically transferred to line 22, back in
main(), where the microcontroller is then prepared for LPMx.5. If the flow had not

T. N. Krnich 291

emerged by an interruption from LPMx.5, it gets transferred to line 19 where the
alternative path of execution is taken. All flags are cleared, and then interrupts are
enabled.

The main() function ends with preparing the microcontroller for LPMx.5 (line 22),
then it is placed into the low powered mode from where it waits to be interrupted.
These instructions were explained on page 222. When interrupted, the flow of execu-
tion is transferred to the BOR, the first phase of the system reset, and then continues
until it once again enters main(). The flow should never reach the return instruction
on line 24.

The ISR begins on line 57.

.

Since the interrupt vector is bound to every channel in port 2, the ISR must now dis-
tinguish which channel had set the flag and then transfer the flow of execution to the
proper subroutine to handle that particular flag. To make that decision and the proper
transfer, we use a switch() statement. The use of that statement was introduced on
page 260, and then elaborated upon with a detailed explanation starting on page 274;
therefore all those details will not be repeated here.

So in this scenario, our switch() needs two cases: one to handle the input signals
produced by SW1 at P2.3, and one for SW2 input signals at P2.7. We could have just
only used the register variable for the Port 2 Interrupt Vector register (P2IV) as the
parameter for the switch() to make a decision, but instead we use the
__even_in_range() function. Therefore, the parameters are P2IV and 0x10. The first
parameter, P2IV, is the register variable for the Port 2 Interrupt Vector register, and
that means to read the contents of that register. The second parameter, 0x10, means
that number is the last code number in range of codes which that register can provide.
The function will then optimize the switch() code to just use two codes for making
the decision: one for the flag status at P2.3 and one for P2.7. The range is shown by
the Port 2 Interrupt Vector register (P2IV) table in the microcontroller's user guide, as
shown by diagram 87 on page 276.

Let's go to the first case of the switch(). The flow is transferred here if the code in
the interrupt vector register is equal to P2IV_P2IFG3. That's the code number for the
P2.3 flag, and it's defined in the header file. The first three instructions, beginning on
line 64, unlocks the FRAM, then increments our counter variable (stored in FRAM),

292 Interruption from Fractional Low Powered Mode (LPMx.5)

and then relocks the FRAM. This sequence of instructions is explained by the code
example on page 214.

On lines 67 to 73 is

Now for the second case in the switch(), it's used for flashing the red LED just once
to visually tell us that the counter variable has been cleared to zero. So in order to
clear the variable, we first have to unlock the FRAM (line 76) since it is in FRAM,
then clear the variable (line 77), and then relock the FRAM (line 78). Then on lines
79 to 81 the red LED is flashed once. On line 82 the flow is transferred to the end of
the ISR.

On line 83 is another MSP430 intrinsic function, the __never_executed() function.
It is used as the default case, and it is specially designed for handling codes produced
by a vector generator. It tells the compiler that our switch() can only take on values
represented by the case labels within our switch() block. It provides information to
the compiler when testing our program. In other words, the compiler will avoid gen-
erating test code for handling values which are not specified by the switch() case
labels.

- - -

Index

Symbols
#define 145
#include 144, 146
#pragma Directives 147
#pragma, vector 245
__delay_cycles() 225
__even_in_range() function 208
__interrupt 246
__never_executed() 244, 292
__no_operation() 288
_system_post_cinit() 96, 142, 147
_system_pre_init() 96, 141, 147

A
active mode 133
ADC

differential 22
module 21
single-ended 22

ADC calibration transfer function 171
ADCENC 167
ADCON 167
ADCSC 172
address space

as a region of storage 75
definition of 7
sizes 18

analog
ground 19
power supply 19

arithmetic logic unit 1
AVCC 19
AVSS 19

B
backup memory registers, using 220
BAKMEM 217
BAKMEM Module 30
bandgap 165
basic view of a microcontroller 12
binary

number notation 6
numbers 4

bit
clearing a 38
clearing, meaning of 61
definition of a 5
setting a 38
setting, meaning of 61
toggling, meaning of 61

bitfield
accessibility 47
description, simple 7, 35
initial condition 47
interrupt enable 49
mask suffix 46
mask, detailed description of a 46
mask, simple description of a 38
masking concepts 62

...continuation of bitfield
register table, in a 45

bitfield accessibility and the initial condition 187
bitfield mask 62
bits

clearing 67
setting 65
simultaneously setting and clearing 69
toggling 70

bitwise
manipulation, simple explanation 46
operation 62

block of instructions 103
boot hook function

post initialization 147
pre-initialization 147

boot hook functions 140
boot initialization 175
boot program 139, 140

location of 139
memory protection unit 141
post initialization function 142
pre-initialization function 141
program execution stack 141

BOR
description 135
events that produce a 135
operating mode diagram, within 132

BOR signal 40
brownout 131
brownout circuit 131
brownout reset 135
buffers, port channel 190
Built 247
byte 5
byte mode 178
byte mode access 220

C
C/C++ software stack 141
calibration data 19, 36
capacitors, for the VCC pin 41, 129
CCS

compiler optimization for a file 60
displayed numbering format 60
project compiler optimization 60
stepping through each instruction 59

channel function multiplexor 194
channel, port 23
char data type width 45
clearing bits 67
clock cycles for an instruction 93
clock frequency 20
clock system

module description 21
password violation 137

clock system registers, unlocking the 198
clock, profile 94
Code Composer Studio. See CCS
Common Control Block 194

294 Index

compiler
MSP430 relaxed 79
strict C 79

conditioning circuit 15, 16, 111
ADC example 22

constant
generator registers 8
numerical value 75
symbolic 62

control logic 1
conventional C functions 146
conventional register 235
core voltage 134
CPU

crash and watchdog timer overflow 137
definition of a 1
description 6
handling an ISR (internal event) 15
handling and ISR (external event) 17
in the reference model 110
interruption in larger context 142
memory structure 36
module, as a 20
supply voltage, effects from 20

CPUX compared to CPU 6
CRC16 module 24
cyclic redundancy check (CRC) 24

D
data

how developers view it 6
how the microcontroller views it 5
processing, meaning of 1
storage 75

data types
char 45
integer 45
long integer 45

DCO 154
debugging mode 20
decimal notation 6
decision and output signal sequence 125
delay function 225
delay handler 154
device descriptors 171
digital

ground 19
power supply 19

digital I/O module
description, simple 50
port, as compared to a 50

digital I/O pins
PUC affects 138
unlocking 123

digital I/O port channels, unlocking the 201
digitally controlled oscillator 154
do...while() statement 106
DVCC 19, 129
DVSS 19, 129

E
EEM 20
electronic fuse 20
enable maskable interruptions 124
environment 75

eUSCI Module 28
event

definition of an 110
externally occurring 111
internally occurring 112
start 130

event monitoring blocks 227
event-driven pattern

details 120
in a larger context 127

execution, flow of 105
Expressions window 216
external oscillating device 21

F
fetch

and execute cycle 2, 15, 17
description 137
from peripheral area 137

firmware
defined 4
image 35, 143

flag signal buffer 190
flow of execution 105
for() statement 106
fractional low power operating mode 132
fractional lower powered modes 223
FRAM 7, 18, 137, 217

access control 213
controller 214
data 214
information 214
memory password violation 137
program 214
unlocking and locking 213

function
C language 99
frame stack 141

functional block diagram 17

G
GCC

description 79
extensions, enabling 80

general interrupt enable. See GIE
general purpose input or output. See GPIO
GIE 15, 93
global

storage variables 145
variables, initializing 141

GPIO 22, 187
ground

analog 19
digital 19

H
header file

base 146
C language 144
MSP430.h 45

hexadecimal number notation 6

T. N. Krnich 295

I
I/O Port Modules 22
I2C 28
IE 49
if() selection statement 106
if...else selection statement 106
IFG 14, 49, 245

flow of execution 203
its state through LPMx.5 190

image. See firmware image
immutable 75
indirection operator 83
information memory 36
initial condition table 48
initialization, definition of 134
initializing

global variables 141
operating mode diagram, as shown by 131

input
signal 143
signal sequence 125
signal stack 110

instrinsics.h 146
instruction clock cycles 93
instruction, definition of an 1
integer

constant 79
data type width 45

interrupt
compare controller 14
compare controller (ICC) 233
control logic 229
enable bit, general 15
flag bit 14
flag handler, port channel 202
maskable 15, 92
non-maskable. See NMI
port, at a 23
prioritization 232
requests 9
See interrupt service routine
system 14
system bitfields 49
system reference model 111
vector 203, 228, 245
vector generator register (IVR) 207
vector register 227, 235
vector table 14, 36

interrupt request signal 125
interrupt service routine 9, 49

customized default 248
defining 147
final instruction 15
purpose 111, 112
triggered by an external event 17
triggered by an internal event 15
within the reference model 109

interrupt system 125
interruption

determining the source of an 203
how it is processed 230
non-reset 203
reset 203, 237

interruptions
complete list of 134
enable maskable 124

intrinsic functions 133

IrDA 29
IRQ 9, 125
IRQA 184
ISR

LPMx.5 interruption, for the 284
purpose of an 9
See interrupt service routine
syntax 245
syntax for the conventional 245
syntax for the custom default 248
vector 14

IVR 235

J
Joint Test Action Group (JTAG) 20
JTAG 20, 130

L
LDO 130
LFXT 21
locking the microcontroller 20
LOCKLPM5 202
long integer data type width 45
loop, structure 106
low power operating mode 125, 132, 133
low powered operating mode, entering a 222
LPM. See low power operating mode
LPM3.5 domain 29
LPMx.5 132, 223

bitfields for determining the interruption 281
domain 279
flow of execution diagram 281
Interrupt Handler 283
interrupt handler 281
interrupting from 279
types of interruptions 279
volatile data handler 280

M
MAB 19
machine registers 8
macro 88, 145
main memory

address space 35
map 36
memory modules 18
purpose 35
registers in 35
sizes 6
structure 35

main() function 99, 142
maskable interrupt 15, 124, 133, 229

enabled with PUC 138
enabling and disabling 212

masking concepts, bitfield 62
MDB 19
memory

access, direct 61
access, symbolic 61
buses 19
consumed, determining how much is 221
map 36
modules 18
non-volatile 213

296 Index

...continuation of memory
See also main memory
segment violation 137
volatile 213

Memory Browser window 216
Memory Protection Unit 141, 214

registers, unlocking the 198
violation of 137

microcomputer, definition of 2
microcontroller

history 2
series 285
when the name appeared 3

microprocessor, definition of 2
MODCLK 166
model register 61
MODOSC 173
module

ADC 21
BAKMEM 30
clock system 21
CPU, EEM, JTAG, and SBW 20
CRC16 24
embedded emulation 20
eUSCI 28
I/O Port 22
memory 18
MPY32 22
peripheral 2
power management 19, 134
RTC counter 30
SYS 24
system 2
timer 25
types of 2

MPU. See Memory Protection Unit
MPY32 Module 22
MSP, definition of 3
MSP430

C preprocessor 143
compiler 143
header file 45
input/output power 1
purpose and usage 1, 3
reference model 109
when it began to be marketed 3
why use the MSP430 3

msp430.h 146
MSP-BSL 139
multiplexer, port 23
mutable 75

N
native word size 5, 19
Negative Logic GPIO Input Function 191
nibble 5
NMI 15, 20, 92, 124, 133, 229, 249
noise at the VSS and VCC pins 129
non-maskable interruption. See NMI
non-volatile program code 36
numbering format, CCS displayed 60

O
object 75
operand 75

operating mode 222
diagram 131
how created 14
low power 125

operating modes, table of 268, 280
operator 75
oscillator

for the clock system 21
low frequency 21
settling handler 122

oscillator settling handler 182
output buffer 194
output signal 143

defined 112
sequence 125
stack 112
the proper way to produce an 112

overflow 26
in the RTC module 30
timer 26

P
password protected registers 176
pattern

definition of a 115
ISR-based 128
NMI-based 128

patterns for program development
event-driven 120
repetitive-driven 115

peripheral device
active 111
definition of 2
passive 111

peripheral module 2
PERSISTENT() #pragma 217
physical interfacing 129
pins, unused 130
plan, development 107
PM5CTL register 123
PM5CTL0 202
PMM 19

password 165
register table 177
registers, unlocking the 197

pointer 83
pointer variable 83
POR 136

events which cause a 136
operating mode diagram, within 132
signal 41

port 22, 51
bitfield masks, register 52
channel 23
channel, configuring a 187
digital I/O module, as compared to a 50
Input/Output Diagram 187
Input/Output diagram description 194
multiplexer 23
pins 52
register table, first type of port 52
register table, second type of port 54
register table, third type of port 56
register tables 52

Positive Logic GPIO Input Function 192
post 142

T. N. Krnich 297

power management module 19, 134
power management module violation 137
power supply

analog 19
stack 113

power-up 39, 129, 131, 132
preprocessing translation unit 143
process 89
profile clock 94
program

counter 230
development tool 35
execution 106
execution environment 35
execution stack 141, 230
storage location 7
within the reference model 109

programmer-debugger 21
programming symbol 38
protected registers, accessing 197
protocol 28
PUC 137

events which cause a 137
operating mode diagram, within 132
signal 41

pulse width modulated voltage signal 27
PWM 27
PxIFG 190
PxIN 188
PxOUT 189
PxREN 189

R
RAM 7, 18, 36, 217
random access memory. See RAM
read only memory. See ROM
reading a register 77
real-time clock 30
reference model 109
reference oscillator 153
REFO 153
register

accessibility & initial conditions ex. 91
bitfield descriptions 48
bitfields 45
CPU registers 8
definition of 6
location of 7
main memory registers 7
model 61
purpose of main memory registers 8, 43
reading a 77
re-initialization of 131
See also register variable
testing the contents of a 81
writing into a 61

register table
basic introduction 37
behavioral description 38
bitfields 45
conventional register table 43
conventional type of table 38
data description 37
detailed explanation 43
functional view, used with a 49
port register tables 52

...continuation of register table
types of 38
unconventional type of table 38
watchdog, for the 90

register variable
description, detailed 44
description, short 23
reading and writing into, when 45

remotely updating the microcontroller 21
repetition structure 106
reset 39
reset (RST/NMI) pin 138
reset fault handler 123, 211
reset interruption 229, 237
reset system 39

BOR signal 40
BOR, POR, and PUC 134
initialization signal 134
POR signal 41
power-up 39
PUC signal 41
purpose 131, 134
reset 39
reset signal 134
subsystems 134

RESET_VECTOR 203
resistor, pull-up/pull-down 189
RETI 232
return statement 100
ROM 7, 36, 217
routine, definition of a 103
RST 20
RST/NMI Pin 92
RST/NMI pin 230
RTC

counter module 30
module 21

run-time stack 141

S
SAMPCON 166
SAR 172
SBW 20
Schmitt Trigger 51, 158
selection structure 106
sequence

decision and output signal 125
input signal 125
structure 105
system configuration and setup 121

series, microcontroller 285
service, definition of a 103
servicing

a module 103
an ISR 103

setting bits 65
SHI 167
shutdown mode 132
SNMI 15, 230, 249
software, definition of 4
SPI 28
Spy-Bi-Wire 20
SRAM 18
stack

input signal 110
output signal 112

298 Index

...continuation of stack
power supply 113
program execution 141

standard bits 47
standby mode 132
start event 130
status register 133, 138, 230

operating modes 29
purpose 9

storage
data 75
location 75
variable 75, 124

structure
flow lines 106
repetition control 106
selection control 106
sequence control 105

subroutine, definition of a 103
supply voltage

effect on CPU 20
requirements 129
supervision 130
supervisors 19

SVSH 130
SW BOR 133
SW PUC 133
switch() selection statement 106
symbolic constant 62, 145
SYS Module 24
system

configuration and setup sequence 121
module 2
module, in the reference model 110
NMI 15
post-initialization 95
pre-initialization 95

System Control Module 214

T
terminal functions table 32
timer

as a frequency dependent timer 26
as a frequency independent counter 26
as a module for measuring rates 26
as described by functional a diagram 28
for producing PWM signals 27
module overview 25
overflow definition 14
overflow example 26

Timer A0 module 193
translation unit

conventional C 144
directives 143
intrinsic 143
MSP430 units 146

U
UART 28
uncorrectable FRAM bit error detection 137
unlock the digital I/O pins 123
UNMI 15, 20, 230, 249
unused port channels, configuring 198
use case, definition of 109
user NMI 15

V
value, constant numerical 75
variable

declaring a storage 76
immutable 75
mutable 75
storage 75

Vcore 133
vector 14
vector #pragma 245
vector generator 207
view

basic view of a microcontroller 12
definition of 11
device pinout 31
event, view of externally occurring 16
event, view of internally occurring 13
event-driven pattern, of the 120
functional block diagram 17
module functional 32
pin designation 31
startup 12

viewing register bitfields during operation 190
volatile

data 121
data handler 124
memory 4, 29, 30
program data 36

voltage
level effects 129
regulators 130
supply requirements 129
supply supervision 130
supply supervisors 19

VSVSH- 130
VSVSH+ 130

W
watch crystal 21, 116, 122
watchdog timer 89, 136, 137, 138, 197

handler 121
password violation 137
reading its registers 96
stopping during boot 95
WDTHOLD bitfield 94
WDTPW bitfield 91

while() statement 106
word mode access 220
word, definition of a 5

X
XIN 21
XOUT 21

Preface
1. Introduction
2. Visualizing How the MSP430 Operates
3. Visualizing the Main Memory
4. The Reset System and its Subsystems
5. How to read and use the Register Tables
6. Code Composer Studio Usage Tips
7. How to Write into a Register
8. How to Declare a Storage Variable
9. How to Read a Register
10. Background for Testing the Contents of a Register
11. How to Test the Contents of a Register
12. How to use a Pointer to Read and Write into Main Memory
13. Watchdog Timer and Putting it on Hold
14. main() Function
15. Program Development Nomenclature
16. Structures for Program Development
17. Basic Approach for Developing a Microcontroller Solution
18. MSP430 Reference Model
19. Patterns for Program Development
20. Placing the Event-Driven Pattern into a Larger Context
21. Repetitive-Driven Programming Examples
22. Event-Driven Programming Routines and Practices
23. Interrupt Handling and Interrupt Vectors
24. How to Determine which are the Multi-Flagged Vectors
25. The Reset Interruption
26. How to Write an Interrupt Service Routine (ISR)
27. Non-Maskable Interruption (NMI)
28. Maskable Interruption
29. Interruption from Fractional Low Powered Mode (LPMx.5)
Index

Contents

310 Pages

Written, Illustrated, Edited, and Printed in the U.S.A.

http://internetpress.com

Internetpress®

For anyone who wants to easily and quickly develop a basic knowledge
about how to develop programs for the MSP430 microcontroller.

Volume 1
The MSP430 Microcontroller Engineering Guide: Getting Started

This book provides an insight to this remarkably sophisticated, powerful, yet easy to use
computing system on a chip (SoC) which non-engineers and engineers can understand. It
presents the basic concepts and fundamental techniques needed for developing programs
which the MSP430 can use for monitoring sensors, controlling actuators, driving displays,
and sharing information with remote destinations.

This series of books form a library written for anyone who wants to easily and quickly
learn about developing programs and connecting devices to what might be the very
best 16-bit microcontroller.

9 7 8 0 9 9 8 5 7 3 6 0 1

1 3 4 3 0 >
ISBN 978-0-9985736-0-1

$134.30

